Math, asked by maddadkaroyarr, 4 months ago

A pole 3m high casts a shadow √3 m long on the ground, then find the sun’s
elevation.

Answers

Answered by Aryan0123
26

Given :-

  • Height of pole = 3 m
  • Length of shadow = √3 m

 \:

To find :-

Angle of sun's elevation = θ = ?

 \:

Solution :-

To solve such questions, we apply the concept of trigonometry.

 \to \:  \sf{tan \theta =  \dfrac{ \sqrt{3} }{3}} \\  \\

 \to \:  \sf{tan \theta =  \dfrac{  \cancel{\sqrt{3}} }{ \sqrt{3} \times   \cancel{\sqrt{3}}  } } \\  \\

 \to \: \sf{tan \theta =  \dfrac{1}{ \sqrt{3} } } \\  \\

 \to \:  \sf{ \theta =  tan {}^{ - 1}  \bigg(\dfrac{1}{ \sqrt{3} }  \bigg)} \\  \\

  \to \:  \boxed{ \bf{\theta =  {30}^{ \circ} }} \\  \\

∴ The angle of elevation of Sun = 30°

 \\  \\

Know more:

tan theta is the opposite side divided by the adjacent side.

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

Attachments:
Answered by TheBrainlyStar00001
7

Gɪᴠᴇɴ Iɴғᴏ :-

  • A pole 3m high casts a shadow √3 m long on the ground.

 \\

Tᴏ Fɪɴᴅ :-

  • Sun’s elevation.

 \\

Cᴏɴᴄᴇᴘᴛ Usᴇᴅ :-

  • Here, the concept of trigonometry is used.

 \sf \quad \bull \:  \tan \theta \:  \: ➪ \:  \:   \dfrac{length \: of \: the \: shadow}{length \: of \: the \: pole}

 \\

Rᴇǫᴜɪʀᴇᴅ Sᴏʟᴜᴛɪᴏɴ :-

 \\

Lᴇᴛ, (θ) be the elevation of the Sun.

\\ \sf  ➠ \:  \tan \theta \:  \: ➪ \:  \:   \dfrac{length \: of \: the \: shadow}{length \: of \: the \: pole}   \\

  \tt  ➠ \:  \tan \theta \:  \: ➪ \:  \:   \dfrac{ \sqrt{3} }{3  }   \\

  \sf  ➠ \:  \tan \theta \:  \: ➪ \:  \: \dfrac {\cancel{ \sqrt{3} } \:  {}^{1} }{ \sqrt{3} \times   \cancel{\sqrt{3}   } \: _{1}      }\\

Hᴇʀᴇ , √3 and √3 is cancelled.

 \\   \sf  ➠ \:  \tan \theta \:  \: ➪ \:  \: \dfrac {{1} }{ \sqrt{3}      }\\

\sf  ➠ \:   \theta \:  \: ➪ \:  \:  \tan {}^{ - 1}  \:  \:  \bigg(\dfrac  {1 }{ \sqrt{3}  }\bigg)\\

Hᴇʀᴇ, ᴡᴇ ᴀʀᴇ ᴛᴀᴋɪɴɢ tan ᴛᴏ ᴛʜᴇ RHS ᴀɴᴅ ᴡᴇ ʜᴀᴠᴇ ᴍᴀᴋᴇᴅ tan ➠ tan ^(-1).

   : \implies \: \underline{ \boxed{ \bf{ \theta \:  \: ➠ \:  \: 30 {}^{ \circ} }}}

 \\

  \bf{\therefore{ \underline{Hence, \:  {\sf{angle  \: of \: elevation \: of \: sun \: is \: }}30 {}^{ \circ} .}}} \\  \\

Hope it helps u

Similar questions