Math, asked by anandthaniyilar1274, 11 months ago

A pole of 8m cast a shadow of 10m find the hight of tree cast a shadow of 40m

Answers

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Height\:of\:tree=32\:m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Height\: of \: pole = 8 \: m \\  \\  \tt:   \implies Shadow \: of \: pole = 10 \: m \\  \\  \tt:  \implies Shadow \: of \: tree = 40 \: m \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Height \: of \: tree = ?

• According to given question :

 \circ \:  \tt{Let \: angle \: of \: elevation \: for \: both \: pole \: and \: tree \: be \:  \alpha } \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies tan \:  \alpha =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies tan \:  \alpha =  \frac{8}{10}  \\  \\ \tt:  \implies tan \:  \alpha = 0.8  \\  \\  \bold{For \: tree : } \\   \tt:  \implies tan \:  \alpha =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies 0.8 =  \frac{h}{40}  \\  \\   \tt:  \implies 0.8 \times 40 = h \\  \\ \green{\tt:  \implies h = 32 \: m} \\  \\   \green{\tt \therefore Height \: of \: tree \: is \: 32 \: m}

Answered by Anonymous
5

Answer:

The height of the tree is 32m

Step-by-step explanation:

Let us consider

• the pole be CD

• the tree be AB

• Shadow of pole DO

• Shadow of tree BO

• Let the angle AOB = ø

We are given ,

CD = 8m

DO = 10m

and BO = 40m

From the trigonometric functions we have

 \tan\theta =  \frac{</u></strong><strong><u>P</u></strong><strong><u>erpendicular}{</u></strong><strong><u>B</u></strong><strong><u>ase}

So here

 \tan \theta =  \frac{</u></strong><strong><u>CD</u></strong><strong><u>}{</u></strong><strong><u>DO</u></strong><strong><u> }  \\  \implies \tan \theta =   \frac{8m}{10m}  \\  \implies \tan \theta =  \frac{8}{10}

Now we have from triangle AOB

 \tan \theta =  \frac{AB}{BO}  \\  \implies  \frac{8}{10}  =  \frac{AB}{40}  \\  \implies AB =  \frac{8 \times 40}{10}  \\  \implies AB = 32

Therefore , height of the tree , AB = 32m

Attachments:
Similar questions