Math, asked by jwjwjjwjjwjj, 11 months ago

A polygon has 20 diagonals. The number of sides is:​

Answers

Answered by RvChaudharY50
117

\Large\underline\mathfrak{Question}

  \red{\textbf{A polygon has 20 diagonals.}}  \\  \textbf{The number of sides is ?}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

\pink{\large\boxed{\boxed{\bold{ \frac{n(n - 3)}{2} }}}}

\rule{200}{4}

\bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{\:Answer}}}}}}}}}}

\red\longmapsto\:\rm \green{\dfrac{n(n - 3)}{2}  = 20} \\  \\ \red\longmapsto\:\rm  \: \blue{n(n - 3) = 20 \times 2} \\  \\ \red\longmapsto\orange{\rm \:  {n}^{2} - 3n - 40 = 0} \\  \\\red\longmapsto\:\rm \:  {n}^{2} - 8n + 5n - 40 = 0 \\  \\ \red\longmapsto\:\rm \red{n(n - 8) + 5(n - 8) = 0} \\  \\ \red\longmapsto\:\rm \purple{(n - 8)(n + 5) = 0} \\  \\ \red\longmapsto\:\bf \: n = 8 \: or \: ( - 5) \\  \\ \red\longmapsto\:   \large\underline{\boxed{\bf\green{n}  \orange=  \purple8}}

   \blue{\underline\textbf{Hence, The Polygon Have 8 sides.}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\bold{\red{\ddot{\smile}}}

\rule{200}{4}

Answered by Anonymous
38

\huge{\mathfrak{Bonjour!♡}}•°⭑

\bullet\underline{\textsf{\color{grey}{AnsWer:-}}}

8 sides

\bullet\underline{\textsf{\color{grey}{SteP By SteP ExplainaTion:-}}}

The diagonal of a polygon is given by the formula;

 \longrightarrow \: { \tt{ \frac{n(n - 3)}{2}  = 20}} \\ \\  \rightarrow \:{ \tt{ n {}^{2}  - 3n = 40}} \\  \\  \rightarrow \:{ \tt{ n { }^{2}  - 3n - 40 = 0}} \\  \\   \rightarrow{ \tt{(n - 8)(n + 5) = 0}} \\  \\  \rightarrow \: { \bf{n = 8 \: or \:  - 5}}

But the number of side must be positive;

•°• The number of side of the polygon = 8.

Similar questions