Math, asked by gauravkumar250505, 19 days ago

a polygon has 324 diagonals determine the number of sides of this polygon​

Answers

Answered by kjasra122
1

Answer:

27

Step-by-step explanation:

Sides Diagonals

27 324

28 350

29 377

30 405

Answered by Anonymous
25

Given:-

\red{➤}\:\sf Number \:of\: diagonals\;in\;polygon = 324

\\

To Find:-

\orange{☛}\:\sf Number \:of \:Sides\: of \:polygon

\\

Solution:-

\underline{\tt{Formula\:Applied}}

\green{ \underline { \boxed{ \sf{Number\:of\:diagonals=\dfrac{n(n-3)}{2}}}}}

\tt\pink{where\; "n"\:is\:number \:of\:sides\:of\:polygon}

\\

\underline{\bf{Putting\;Values-}}

\begin{gathered}\\\quad\longrightarrow\quad\sf \dfrac{n(n-3)}{2} = 324  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n(n-3)= 324 \times 2 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n^2-3n= 648\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n^2-3n-648 =0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n^2-27n+24n-648 =0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n(n-27)+24(n-27) =0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf (n-27)(n+24) =0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf n = 27 , n= -24\\\end{gathered}

We will neglect negetive value

\begin{gathered}\\\quad\therefore \quad\sf n= 27   \\\end{gathered}

\begin{gathered}\\\quad \maltese\quad\boxed{\sf {Number \:of \:Sides\: of \:polygon=27 }}\\\end{gathered}

Note-

If factorisation seems difficult by splitting method ,do it by quadratic formula method-

\sf {Supposing\; quadratic\; equation\; \red{ax^2+bx+c=0}}

Quadratic formula-

\orange{ \underline { \boxed{ \sf{x=\dfrac{-b±\sqrt{b^2-4ac}}{2a}}}}}

Similar questions