Math, asked by omsingh8550, 1 day ago

A population consist of five number 246810. Consider all possible sample of size two which can be taken with replacement from this population

Answers

Answered by dreamgirlmegha
3

Answer:

Mean

\mu=\dfrac{2+6+8+0+1}{5}=3.4μ=

5

2+6+8+0+1

=3.4

Variance

\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2σ

2

=

5

1

((2−3.4)

2

+(6−2.4)

2

+(8−3.4)

2

(0-3.4)^2+(1-3.4)^2\big)=9.44(0−3.4)

2

+(1−3.4)

2

)=9.44

Standard deviation

\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725σ=

σ

2

=

9.44

≈3.0725

2. We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is

\dbinom{N}{n}=\dbinom{5}{2}=10(

n

N

)=(

2

5

)=10

\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,6 & 4 \\ \hdashline 2 & 2,8 & 5 \\ \hdashline 3 & 2,0 & 1 \\ \hdashline 4 & 2,1 & 1.5 \\ \hdashline 5 & 6,8 & 7 \\ \hdashline 6 & 6,0 & 3 \\ \hdashline 7 & 6,1 & 3.5 \\ \hdashline 8 & 8,0 & 4 \\ \hdashline 9 & 8,1 & 4.5 \\ \hdashline 10 & 0,1 & 0.5 \\ \hline \end{array}

Sample

No.

1

2

3

4

5

6

7

8

9

10

Sample

values

2,6

2,8

2,0

2,1

6,8

6,0

6,1

8,0

8,1

0,1

Sample mean

(

X

ˉ

)

4

5

1

1.5

7

3

3.5

4

4.5

0.5

3. The sampling distribution of the sample means.

\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 1/2 & 1& 1/10 & 1/20 & 1/40 \\ \hdashline 1 & 1 & 1/10 & 2/20 & 4/40 \\ \hdashline 3/2 & 1 & 1/10 & 3/20 & 9/40 \\ \hdashline 3 & 1 & 1/10 & 6/20 & 36/40 \\ \hdashline 7/2 & 1 & 1/10 & 7/20 & 49/40 \\ \hdashline 4 & 2 & 2/10 & 16/20 & 128/40 \\ \hdashline 9/2 & 1& 1/10 & 9/20 & 81/40 \\ \hdashline 5 & 1& 1/10 & 10/20 & 100/40 \\ \hdashline 7 & 1 & 1/10 & 14/20 & 196/40 \\ \hdashline Total & 10 & 1 & 68/20 & 604/40 \\ \hline \end{array}

X

ˉ

1/2

1

3/2

3

7/2

4

9/2

5

7

Total

f

1

1

1

1

1

2

1

1

1

10

f(

X

ˉ

)

1/10

1/10

1/10

1/10

1/10

2/10

1/10

1/10

1/10

1

X

ˉ

f(

X

ˉ

)

1/20

2/20

3/20

6/20

7/20

16/20

9/20

10/20

14/20

68/20

X

ˉ

2

f(

X

ˉ

)

1/40

4/40

9/40

36/40

49/40

128/40

81/40

100/40

196/40

604/40

(

X

ˉ

)=∑

X

ˉ

f(

X

ˉ

)=

20

68

=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.

E(\bar{X})=3.4=\muE(

X

ˉ

)=3.4=μ

5.

Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2Var(

X

ˉ

)=∑

X

ˉ

2

f(

X

ˉ

)−(∑

X

ˉ

f(

X

ˉ

))

2

=\dfrac{604}{40}-(\dfrac{68}{20})^2=\dfrac{1416}{400}=\dfrac{354}{100}=3.54=

40

604

−(

20

68

)

2

=

400

1416

=

100

354

=3.54

\sqrt{Var(\bar{X})}=\sqrt{\dfrac{354}{100}}\approx1.8815

Var(

X

ˉ

)

=

100

354

≈1.8815

Verification:

Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1})Var(

X

ˉ

)=

n

σ

2

(

N−1

N−n

)=

2

9.44

(

5−1

5−2

3.54,

Similar questions