Math, asked by rahulsatishpatil, 5 months ago

A positive fraction is such that the denominator is five more than the numerator. Find the fraction
if the sum of squares of the numerator and denominator is 73.​

Answers

Answered by EliteZeal
69

A n s w e r

 \:\:

G i v e n

 \:\:

  • In a positive fraction denominator is five more than the numerator

  • Sum of squares of the numerator and denominator is 73

 \:\:

F i n d

 \:\:

  • The fraction

 \:\:

S o l u t i o n

 \:\:

  • Let the numerator of the fraction be 'n'

  • Let the denominator of the fraction be 'd'

 \:\:

\underline{ \underline{\bold{\texttt{Original fraction :}}}}

 \:\:

 \sf \dfrac { n } { d } ⚊⚊⚊⚊ ⓵

 \:\:

Given that , denominator is five more than the numerator

 \:\:

Thus ,

 \:\:

: ➜ d = n + 5 ⚊⚊⚊⚊ ⓶

 \:\:

Also given that , Sum of squares of the numerator and denominator is 73

 \:\:

: ➜ n² + d² = 73 ⚊⚊⚊⚊ ⓷

 \:\:

Putting d = n + 5 from ⓶ to ⓷

 \:\:

: ➜ n² + d² = 73

 \:\:

: ➜ n² + (n + 5)² = 73

 \:\:

: ➜ n² + n² + 25 + 10n = 73

 \:\:

: ➜ 2n² + 10n + 25 - 73 = 0

 \:\:

: ➜ 2n² + 10n - 48 = 0

 \:\:

Dividing the above equation by 2

 \:\:

: ➜  \sf \dfrac { 2n² + 10n - 48  } { 2 } = \dfrac { 0 } { 2 }

 \:\:

: ➜ n² + 5n - 24 = 0

 \:\:

: ➜ n² + 8n - 3n -24 = 0

 \:\:

: ➜ n(n + 8) - 3(n + 8) = 0

 \:\:

: ➜ (n - 3)(n + 8) = 0

 \:\:

  • n = 3
  • n = -8

 \:\:

Given that the fraction need to be positive

 \:\:

Thus ,

 \:\:

: ➜ n = 3 ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence the numerator of fraction is 3

 \:\:

Putting n = 3 from ⓸ to ⓶

 \:\:

: ➜ d = n + 5

 \:\:

: ➜ d = 3 + 5

 \:\:

: ➜ d = 8 ⚊⚊⚊⚊ ⓹

 \:\:

  • Hence the denominator of fraction is 8

 \:\:

Putting n = 3 from ⓸ & d = 8 from ⓹ to ⓵

 \:\:

: ➜  \sf \dfrac { n } { d }

 \:\:

: : ➨  \sf \dfrac { 3} { 8}

 \:\:

  •  \sf Hence \: the \: original \: fraction \: is \: \sf \dfrac { 3} { 8}

Anonymous: Awesome as always!
Answered by Ranveerx107
0

S o l u t i o n

 \:\:

  • Let the numerator of the fraction be 'n'

  • Let the denominator of the fraction be 'd'

 \:\:

\underline{ \underline{\bold{\texttt{Original fraction :}}}}

 \:\:

 \sf \dfrac { n } { d } ⚊⚊⚊⚊ ⓵

 \:\:

Given that , denominator is five more than the numerator

 \:\:

Thus ,

 \:\:

: ➜ d = n + 5 ⚊⚊⚊⚊ ⓶

 \:\:

Also given that , Sum of squares of the numerator and denominator is 73

 \:\:

: ➜ n² + d² = 73 ⚊⚊⚊⚊ ⓷

 \:\:

⟮ Putting d = n + 5 from ⓶ to ⓷ ⟯

 \:\:

: ➜ n² + d² = 73

 \:\:

: ➜ n² + (n + 5)² = 73

 \:\:

: ➜ n² + n² + 25 + 10n = 73

 \:\:

: ➜ 2n² + 10n + 25 - 73 = 0

 \:\:

: ➜ 2n² + 10n - 48 = 0

 \:\:

⟮ Dividing the above equation by 2 ⟯

 \:\:

: ➜  \sf \dfrac { 2n² + 10n - 48  } { 2 } = \dfrac { 0 } { 2 }

 \:\:

: ➜ n² + 5n - 24 = 0

 \:\:

: ➜ n² + 8n - 3n -24 = 0

 \:\:

: ➜ n(n + 8) - 3(n + 8) = 0

 \:\:

: ➜ (n - 3)(n + 8) = 0

 \:\:

n = 3

n = -8

 \:\:

Given that the fraction need to be positive

 \:\:

Thus ,

 \:\:

: ➜ n = 3 ⚊⚊⚊⚊ ⓸

 \:\:

Hence the numerator of fraction is 3

 \:\:

⟮ Putting n = 3 from ⓸ to ⓶ ⟯

 \:\:

: ➜ d = n + 5

 \:\:

: ➜ d = 3 + 5

 \:\:

: ➜ d = 8 ⚊⚊⚊⚊ ⓹

 \:\:

Hence the denominator of fraction is 8

 \:\:

⟮ Putting n = 3 from ⓸ & d = 8 from ⓹ to ⓵ ⟯

 \:\:

: ➜  \sf \dfrac { n } { d }

 \:\:

: : ➨  \sf \dfrac { 3} { 8}

 \:\:

 \sf Hence \: the \: original \: fraction \: is \: \sf \dfrac { 3} { 8}

Similar questions