Math, asked by mejabinkousara, 9 months ago

A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are the numbers?​

Answers

Answered by tahseen619
6

Answer:

1st no. = 7

2nd no. = 35

Step-by-step explanation:

let, the 1st no. be x .

So, the other no. be 5x.

Again,

1st no. = x + 21

2nd no. = 5x + 21

According to question,

5x + 21 = 2(x + 21)  \\ \\ 5x + 21 = 2x  + 42 \\ \\  5x - 2x = 42 - 21  \\ \\ 3x = 21 \\  \\ x = 7

So, The required no. are x = 7 and 5x = 35 .

Answered by Anonymous
25

AnswEr :

\:\bullet\:\sf\ Let \: the \: first \: number \: be \: \bf\ x

\:\bullet\:\sf\ So, \: the \: second \: number \: is \: \bf\ 5x

 \rule{100}1

\normalsize\quad\star\sf\ When \: 21 \: is \: added \: to \: both \: no.s

\normalsize\twoheadrightarrow\sf\ First \: number = x + 21

\normalsize\twoheadrightarrow\sf\ Second  \: number = 5x + 21

\underline{\bigstar\:\textsf{According \: to \: the \: question \: now:}}

\normalsize\dashrightarrow\sf\ 2(First \: number) = Second \: number

\normalsize\dashrightarrow\sf\ 2(x + 21 ) = 5x + 21

\normalsize\dashrightarrow\sf\ 2x + 42 = 5x + 21

\normalsize\dashrightarrow\sf\ 3x = 21

\normalsize\dashrightarrow\sf\  x = \frac{\cancel{21}}{\cancel{3}}

\normalsize\dashrightarrow\sf\ x = 7

\underline{\bigstar\:\textsf{Calculation \: of \: numbers:}}

\normalsize\twoheadrightarrow\sf\ First \:  no. = x \\ \\ \normalsize\twoheadrightarrow\sf\ First \:  no.= 7

 \rule{100}1

\normalsize\twoheadrightarrow\sf\ Second \:  no. = 5x \\ \\ \normalsize\twoheadrightarrow\sf\ Second \:  no.= 5 \times\ 7 \\ \\ \normalsize\twoheadrightarrow\sf\  Second  \: no. = 35

\therefore\:\underline{\textsf{Hence, \: the \: required \: numbers \: are}{\textbf{ 7 \: and \: 35}}}

Similar questions