Math, asked by keerthi2121, 1 year ago

a powerx=b powery= c powerz=d powerw then log(abc) base d=​

Answers

Answered by MaheswariS
3

Answer:

log_d{abc}=\frac{yzw+wxz+wxy}{xyz}

Step-by-step explanation:

Formula used:

1.\:log_a{b}=\frac{1}{log_b{a}}

2.\:log_aM^n=n\:log_aM

Given:

a^x=b^y=c^z=d^w=k(say)

Then,

a^x=k\:\implies\:a=k^{\frac{1}{x}}

b^y=k\:\implies\:b=k^{\frac{1}{y}}

c^z=k\:\implies\:c=k^{\frac{1}{z}}

d^w=k\:\implies\:d=k^{\frac{1}{w}}

Now,

log_d{abc}

=log_d{k^{\frac{1}{x}}.k^{\frac{1}{y}}.k^{\frac{1}{z}}}

=log_d{k^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}

={\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}log_d{k}

=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{log_k{d}})

=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{log_k{k^{\frac{1}{w}}}})

=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{1}{\frac{1}{w}log_kk})

=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{w}{log_kk})

=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(\frac{w}{1})

=w(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})

=w(\frac{yz+xz+xy}{xyz})

=\frac{yzw+wxz+wxy}{xyz}

Similar questions