Math, asked by Tarunkumarshiralkopp, 1 year ago

A practice is acted by constant force 3i-j+2k,-i+3j+k and i+j-2k and is displaced from the point (-1,2,3)to(2,-1,5).calculate the total work done by the force

Answers

Answered by Anonymous
8

\large\underline{\underline{\sf Given:}}

  • \sf{F_1=3\hat{i}+\hat{j}-2\hat{k}}

  • \sf{F_2=-\hat{i}+3\hat{j}+\hat{k}}

  • \sf{F_3=\hat{i}+\hat{j}-2\hat{k}}

  • Distance \sf{(r_1)=-\hat{i}+2\hat{j}+3\hat{k}}

  • Distance \sf{(r_2)=2\hat{i}+-\hat{j}+5\hat{k}}

\large\underline{\underline{\sf To\:Find:}}

  • Total work done by force (W) =?

\large\underline{\underline{\sf Solution:}}

\sf{F_1+F_2+F_3(F)=(3\hat{i}-\hat{j}+2\hat{k})+(-\hat{i}+3\hat{k})+(\hat{i}+\hat{j}-2\hat{k})}

\large{\sf F=(3\hat{i}+3\hat{j}+\hat{k}) }

\large\implies{\sf \triangle r=r_2-r_1 }

\large\implies{\sf \triangle r=(2\hat{i}-\hat{j}+5\hat{k})-(-\hat{i}+2\hat{j}+5\hat{k})}

\large\implies{\sf \triangle r=(3\hat{i}-3\hat{j}+2\hat{k})}

\large{\boxed{\sf Work=F\triangle r }}

\implies{\sf W=(3\hat{i}+3\hat{j}+\hat{k}).(3\hat{i}-3\hat{j}+2\hat{k})}

\large\implies{\sf W= 9-9+2}

\large\implies{\sf W=0+2}

\large\implies{\sf W=2J }

\large\underline{\underline{\sf Answer:}}

•°• Total work done by force is 2J

Similar questions