Physics, asked by tanishq668, 4 months ago

A prism with an angle A = 60degree produces an angle of minimum deviation D of 30degree Find the refractive index of the material of the prism​

Answers

Answered by Anonymous
112

GIVEN:-

  • A = 60^{\circ}
  • D = 30^{\circ}

 \\ TO\:FIND:-

  • Refractive index of the material of the prism

 \\ SOLUTION:- \\

★ Refractive index

\\

\implies \:\: n = \dfrac{  sin\bigg(\dfrac{A+D}{2}\bigg)   }{ sin\bigg(\dfrac{A}{2}\bigg)   }

\\

\implies \:\: n = \dfrac{  sin\bigg(\dfrac{60+30}{2}\bigg)   }{ sin\bigg(\dfrac{60}{2}\bigg)   }

\\

\implies \:\: \dfrac{ sin\bigg(\dfrac{90}{2}\bigg)   }{ sin\:30  }

\\

\implies \:\: \dfrac{ sin\:45^{\circ}}{sin\:30^{\circ}}

\\

\implies \:\: \dfrac{  \dfrac{1}{\sqrt{2}}  }{\dfrac{1}{2}}

\\

\implies \:\: \dfrac{ 1}{\sqrt{2}} \times \dfrac{2}{1}

\\

\implies \:\:{\boxed{ \sqrt{2}}}

\\

\therefore The refractive index of the material of the prism \sqrt{2} = 1.414

Similar questions