Physics, asked by shaikaiyshabanu, 1 month ago

A Prism with angle a =60° and produces an angle od deviation of 60°.Then the refractive index of the material of the prism.​

Answers

Answered by Atlas99
94

Solution:

Let the refractive index be x , angle(prism) be A and angle of deviation be D.

 \tt\: x =  \frac{sin \bigg( \frac{A +D}{2}\bigg)} {sin \bigg( \frac{A}{2} \bigg)}\\

  \implies\tt{x = \frac{sin \bigg( \frac{60 + 60}{2} \bigg)} {sin\bigg(\frac{60}{2}\bigg)}} \\

 \implies \tt{x =  \frac{sin \bigg(\frac{120 \degree}{2} \bigg)}{sin \:30 \degree} } \\

 \implies \tt \: x = {\dfrac{sin \: 60 \degree}{sin \: 30 \degree} }

 \implies\tt\space x={\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}}

\implies{\tt{\space x=\sqrt{3}}}

∴ Refractive index = x =\sqrt3

Answered by YourHelperAdi
7

To Find :

The refractive index of the prism .

Given :

  • Angle of prism = 60°
  • Angle of deviation = 60°

Formula To be used:

 \large \tt{ \bull \: r =  \frac{sin( \frac{a+ d}{2} )}{sin( \frac{a}{2} )} }

where,

  • R = refractive index
  • a = Angle of prism
  • d = Angle of deviation

Solution :

given, Angle of prism = 60°

Angle of deviation = 60°

so, refractive index :

 \tt{ r =  \frac{sin( \frac{a + d}{2} )}{sin( \frac{a}{2}) } }

 \implies \tt{r =  \frac{sin( \frac{60 + 60}{2} )}{sin( \frac{60}{2} )}}

 \implies \tt{r =  \frac{sin( \frac{ \cancel{120}}{ \cancel{2}}) }{sin30 \degree} }

 \tt{ \implies \: r =  \frac{sin 60 \degree}{sin30  \degree}}

 \implies \tt{r = sin60 \degree \times  \frac{1}{sin30 \degree} }

 \tt{ \implies \: r =  \frac{ \sqrt{3} }{2}  \times 2}

 \implies \tt{r =  \sqrt{3} }

hence, Refractive index of prism = 3

Similar questions