Physics, asked by dikshapalak24, 10 months ago

A progressive wave is given by
y=3 sin 2pi [(t//0.04)-(x//0.01)]
where x, y are in cm and t in s. the frequency of wave and maximum accelration will be:

Answers

Answered by BrainlyConqueror0901
11

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Frequency=25\:Hertz}}}

\green{\tt{\therefore{Max\:acc^{n}=- 3 \:  (\frac{4\pi^{2} }{0.0016})\:m/s^{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{given: }} \\  \tt: \implies y = 3 \: sin \: 2\pi(   (\frac{t}{0.04} ) -  (\frac{x}{0.01} )) \\  \\  \red{\underline \bold{to \: find: }} \\  \tt: \implies  frequency = ? \\  \\  \tt: \implies maximum \: acceleration =?

• According to given question :

 \tt: \implies 3 \: sin \: 2\pi(( \frac{t}{0.04}) - ( \frac{x}{0.01} ))  \\ \\ \tt:  \implies 3 \: sin(( \frac{2\pi t}{0.04})  -  (\frac{2\pi x}{0.01} ) \\  \\   \tt  \circ \:  amplitude = 3  \\  \\   \tt\circ  \:  \omega =  \frac{2\pi}{0.04} \\  \\  \tt \circ \: k =  \frac{2\pi}{0.01}  \\   \\  \bold{as \: we \: know \:  that} \\  \tt:  \implies f=  \frac{1}{t}  \\  \\  \tt:  \implies f =  \frac{1}{  \frac{2\pi}{ \omega}  }  \\  \\  \tt:  \implies f =  \frac{ \omega}{2\pi}  \\  \\  \tt:  \implies f =  \frac{ \frac{2\pi}{0.04} }{2\pi}  \\  \\   \green{\tt:  \implies f =  \frac{1}{0.04}\:Hertz } \\  \\  \bold{As \: we \: know \: that}  \\  \tt: \implies acceleration =  - a  { \omega}^{2}  \: sin( \omega t - kx) \\  \\  \tt: \implies a =  - 3 \:  (\frac{2\pi}{0.04} )^{2}  \: sin(( \frac{2\pi}{0.04}  \times t -  \frac{2\pi}{0.01}x)) \\  \\  \green{ \tt: \implies a =  - 3 \:  (\frac{4\pi^{2} }{0.0016} \: )sin( \frac{2\pi \: t}{0.04}    -  \frac{2\pi x}{0.01} )}\\\\ \text{For\:maximum\:acceleration\:sin\:value\:should\:be\:1} \\ \green{\tt:\implies Max\:acc^{n}=-3\:(\frac{4\pi^{2}}{0.0016})\:m/s^{2}}

Similar questions