Physics, asked by pratiks2905, 1 month ago

a projectile has a range 80m and reaches a maximum height of 20m the angle of elevation at wich the projectile is fired​

Answers

Answered by hindustanipoet
6

Answer:

The angle of elevation is tan^-1 (1/2)

Explanation:

Let the angle of elevation be x,

R = u^2 sin2x / g

sin2x = Rg / u^2

sin2x = (80)(10) / u^2

sin2x = 800 / u^2

2sinxcosx = 800 / u^2

sinxcosx = 400 / u^2 ... (1)

H = u^2 (sinx)^2 / g

(sinx)^2 = Hg / u^2

(sinx)^2 = (20)(10) / u^2

(sinx)^2 = 200 / u^2 .... (2)

(2) / (1)

tanx = 1/2

x = tan^-1 (1/2)

Answered by nirman95
1

Given:

A projectile has a range 80m and reaches a maximum height of 20m.

To find:

Angle of elevation ?

Calculation:

  • Let Max height be H and range be R.

  • After dividing the values of H and R, we get:

 \dfrac{R}{H}  =  \dfrac{80}{20}

 \implies \dfrac{ \bigg( \dfrac{ {u}^{2}  \sin(2 \theta) }{g}  \bigg)}{\bigg( \dfrac{ {u}^{2}  {\sin}^{2} ( \theta) }{2g}  \bigg)}  = 4

 \implies \dfrac{  \sin(2 \theta) }{  {\sin}^{2} ( \theta) }  = 4

 \implies \dfrac{  2\sin( \theta)  \cos( \theta) }{  {\sin}^{2} ( \theta) }  = 4

 \implies \dfrac{   \cos( \theta) }{  \sin ( \theta) }  = 2

 \implies   \cot( \theta)  = 2

 \implies   \theta = { \cot}^{ - 1}(  2)

So, angle of projection is cot^(-1)[2].

Similar questions