Physics, asked by kauramreen5904, 7 months ago

A projectile is fired with a velocity u, making an angle θ with the horizontal. Show that its trajectory is a parabola and find out its time of flight , maximum height attained and horizontal range.

Answers

Answered by nirman95
11

2D PROJECTILE DERIVATIONS:

Along Y axis :

y = u \sin( \theta) t -  \dfrac{1}{2} g {t}^{2}  \:  \:  \:  \: . \: . \: . \: .(1)

Along X axis :

x = u \cos( \theta) t \:  \:  \:  \: . \: . \: . \: .(2)

Now, put value of t in eq.(1) :

 \implies  y =  \dfrac{u \sin( \theta) x }{u \cos( \theta) }  -  \dfrac{g {x}^{2} }{2 {u}^{2}  { \cos}^{2} ( \theta)}

 \boxed{ \implies  y =  x \tan( \theta)   -  \dfrac{g {x}^{2} }{2 {u}^{2}  { \cos}^{2} ( \theta)} }

_________________________

For time of flight, put y = 0 (as y axis displacement is zero):

0 = u \sin( \theta) t -  \dfrac{1}{2} g {t}^{2}

  \boxed{\implies \: t =  \dfrac{2u \sin( \theta) }{g} }

_________________________

For Range :

x = u \cos( \theta)  \times t

 \implies \: x = u \cos( \theta)  \times  \dfrac{2u \sin( \theta) }{g}

 \boxed{ \implies \: x =  \dfrac{{u}^{2} \sin(2 \theta)  }{g} }

_________________

For max height :

h= u \sin( \theta) t -  \dfrac{1}{2} g {t}^{2}

 \implies \: h= u \sin( \theta)  \bigg \{ \dfrac{u \sin( \theta) }{g} \bigg \} -  \dfrac{1}{2} g { \bigg \{ \dfrac{u \sin( \theta) }{g}  \bigg \}}^{2}

 \boxed{ \implies \: h =  \dfrac{ {u}^{2} { \sin}^{2}( \theta)  }{2g} }

Hope It Helps.

Similar questions