Physics, asked by rockingramya2490, 6 days ago

A projectile is fired with initial velocity of 100m\s at an angle of 30° with the horizontal calculate the maximum height attained

Answers

Answered by MystícPhoeníx
38

Answer:

  • 125 metres is the maximum height attained .

Explanation:

According to the Question

It is given that ,

  • Initial velocity ,u = 100m/s
  • Angle of Projection ,θ = 30°
  • Acceleration due to gravity ,g = 10m/s²

\bigstar\boxed{\bf{H_{max} = \frac{u^{2}Sin^{2}\theta}{2g}}}

\sf\dashrightarrow\; H_{max}  = \frac{100^{2} Sin^{2}30^{\circ}}{2\times10} \\\\\sf\dashrightarrow\; H_{max}  = \frac{10000 \times (\frac{1}{2})^{2} }{20} \\\\\sf\dashrightarrow\; H_{max}  = \frac{10000 \times (\frac{1}{4})}{20} \\\\\sf\dashrightarrow\; H_{max}  =\frac{500}{4} \\\\\sf\dashrightarrow\; H_{max}  = 125 \\\\\boxed{\bf{Hence, the \; maximum \; height \; attained\; is \; 125 \;metres.}}

Answered by StarFighter
35

Answer:

Given :

  • A projectile is fired with initial velocity of 100 m/s at an angle of 30° with the horizontal.

To Find :-

  • What is the maximum height attained.

Formula Used :-

\clubsuit Maximum Height Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Maximum\:  Height =\: \dfrac{v^2sin^2\theta}{2g}}}}\: \: \: \bigstar\\

where,

  • v = Velocity
  • g = Acceleration due to gravity

Solution :-

Given :

  • Velocity = 100 m/s
  • Acceleration due to gravity = 9.8 m/
  • Angle of projection = 30°

According to the question by using the formula we get,

\implies \bf Maximum\: Height =\: \dfrac{v^2sin^2\theta}{2g}\\

\implies \sf Maximum\: Height =\: \dfrac{(100)^2 \times sin^2\: 30^{\circ}}{2(9.8)}\\

As we know that :

\diamond \: \: \sf\bold{\pink{sin\: 30^{\circ} =\: \dfrac{1}{2}}}

\implies \sf Maximum\: Height =\: \dfrac{(100 \times 100) \times \bigg(\dfrac{1}{2}\bigg)^2}{2 \times 9.8}\\

\implies \sf Maximum\: Height =\: \dfrac{\cancel{10000} \times \dfrac{1}{\cancel{4}}}{19.6}\\

\implies \sf Maximum\: Height =\: \dfrac{2500}{19.6}

\implies \sf\bold{\red{Maximum\: Height =\: 127.55\: metres}}\\

\therefore The maximum height attained is 127.55 metes .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA IMPORTANT FORMULA :-

\clubsuit Horizontal Range Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Horizontal\: Range(R) =\: \dfrac{v^2sin2\theta}{g}}}}\: \: \: \bigstar\\

\clubsuit Time Taken Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{Time\: Taken (t) =\: \dfrac{2vsin\theta}{g}}}}\: \: \: \bigstar\\

where,

  • v = Velocity
  • g = Acceleration due to gravity
Similar questions