Physics, asked by OppoGalaxy, 11 months ago

A projectile is given an initial velocity of (i^ + j^) . The cartesian equation of its path is....
(a) \: y = ( x -  {5x}^{2} )
(b) \: y = (2x -  {5x}^{2} )
(c) (2x -  {15x}^{2} )
(d) \: (2x -  {25x}^{2} )

Answers

Answered by shadowsabers03
3

The standard Cartesian equation of the trajectory is,

y=x\tan\theta-\dfrac {g}{2u^2\cos^2\theta}x^2

where,

y = vertical displacement

x = horizontal displacement

\theta = angle of projection

u = initial velocity

The angle of projectile is equal to the angle made by the initial velocity with the horizontal. Thus,

\tan\theta=\dfrac {1}{1}=1\quad\implies\quad\theta=45^{\circ}\\\\\therefore\ \cos^2\theta=\dfrac {1}{2}

Also,

u=\sqrt {1^2+1^2}=\sqrt 2

Then,

\dfrac {g}{2u^2\cos^2\theta}=\dfrac {10\cdot2}{2\cdot 2}=5

Hence the equation of the trajectory is,

\large\text {$\underline {\underline {y=x-5x^2}}$}

Thus the right answer is (a).

Answered by BendingReality
12

Answer:

\displaystyle{y=(x-5x^2)}

a. option is correct.

Explanation:

Given :

Initial velocity u = \displaystyle{\hat{i}+\hat{j}}

Here :

\displaystyle{u_x=1 \ \text{and} \ u_y=1

Component of vectors :

u sin Ф = 1 and u cos Ф = 1

Now tan Ф = 1 / 1 ⇒ 1

We have equation of trajectory :

\displaystyle{y=x.\tan\theta-\frac{g}{ 2u^2 \cos^2\theta} \ .x^2}

Taking g = 10 and putting value of tan Ф

\displaystyle{y=x\times1-\frac{10}{ 2\times1} \ .x^2}

y = x - 5 x²

\displaystyle{y=(x-5x^2)}

Hence we get answer.

Similar questions