Physics, asked by pawanpreetmann007, 5 months ago

a projectile is thrown with a velocity 5metre per second at an angle of 30 degree with the horizontal. calculate range of projectile,time of flight and maximum height.​

Answers

Answered by sougatpati202
0

Explanation:

the Area of a trapezium of height 12cm is 240cm square .if the length of one parallel side is 25cm . find the length of the other parallel side .

Answered by harisreeps
1

Answer:

A projectile is thrown with a velocity 5metre per second at an angle of 30 degrees with the horizontal.

a)   Range of projectile   =  3.1243 m

b)   Time of flight             =  0.51020 sec

c)    Maximum height      =​   0.3188 m

Explanation:

For a projectile motion,

  • Time of flight  :          \mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}  
  • Horizontal range :      \mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}
  • Maximum height:       \mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}

Given,

Initial velocity (u)            = 5 m/s

Angle of projection (θ)    =  30^{0}

Acceleration due to gravity (g) = 98 m/s

The horizontal range is given by,

\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{g}}

   =\frac{\mathrm{5}^{2} \sin( 2 \times 30)}{\mathrm{9.8}}

  (sin 60 = \frac{\sqrt{3} }{2}  )

R   =  3.1243 m

Time of flight can be calculated as follows,

\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}

\mathrm{T}=\frac{2\times \mathrm{5} \times\sin 30}{\mathrm{9.8}}

( sin 30 = \frac{1}{2} )

T =  0.51020 sec

The maximum height is,

\mathrm{H}=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}

   =\frac{\mathrm{5}^{2} \sin ^{2} \ 30}{2\times \mathrm{~9.8}}

H  = 0.3188 m

Similar questions