Physics, asked by aaravshrivastwa, 9 months ago

A projectile is thrown with some initial velocity at an angle \alpha to the horizontal. Its velocity when it is at the highest point is √2/5 times the velocity when it is at height half of the maximum height. Find the angle of Projection \alpha with the horizontal. ​

Answers

Answered by BrainlyIAS
37

Answer

Angle of projection = 60°

Given

A projectile is thrown with some initial velocity at an angle α to the horizontal. Its velocity when it is at the highest point is √2/5 times the velocity when it is at height half of the maximum height

To Find

The angle of Projection α with the horizontal

Solution

In horizontal projection ,

\rm v_y=0\\\\\rm So, v_x=u_x+a_xt\\\\\to\ \rm v_x=u_x\ [\; \because\ a_x=0\ ]\\\\\to\ \rm v_x=ucos\theta\\\\\rm Now,v_1=\sqrt{v_x^2+v_y^2}\\\\\to\ \rm v_1=ucos\theta...(1)

A/c , "  velocity when it is at the highest point is √2/5 times the velocity "

Apply 3rd equation of motion ,

\to\ \rm v^2-u^2=2as\\\\\to\ \rm v_y^2-u_y^2=2a_y.\dfrac{y}{2}\\\\\to\ \rm v_y^2=(usin\theta)^2+2(-g)\dfrac{1}{2}\bigg( \dfrac{u^2sin^2\theta}{2g}\bigg)\\\\\to\ \rm v_y^2=u^2sin^2\theta-\dfrac{u^2sin^2\theta}{2}\\\\\to\ \rm v_y^2=\dfrac{u^2sin^2\theta}{2}\\\\\to\ \rm v_y=\dfrac{usin\theta}{\sqrt{2}}\\\\

\rm Now,v_2=\sqrt{v_x^2+v_y^2}\\\\\rm \to\ v_2=\sqrt{u^2cos^2\theta+\dfrac{u^2sin^2\theta}{2}}...(2)

Given that ,

\rm \dfrac{v_1}{v_2}=\sqrt{\dfrac{2}{5}}\\\\\to\ \rm \dfrac{ucos\theta}{\sqrt{u^2cos^2\theta+\dfrac{u^2sin^2\theta}{2}}}=\sqrt{\dfrac{2}{5}}\\\\\to\ \rm \dfrac{u^2cos^2\theta}{u^2cos^2\theta+\dfrac{u^2sin^2\theta}{2}}=\dfrac{2}{5}\\\\\rm \to\ \dfrac{cos^2\theta}{cos^2\theta+\dfrac{sin^2\theta}{2}}=\dfrac{2}{5}\\\\\rm \to\ \dfrac{1}{1+\dfrac{tan^2\theta}{2}}=\dfrac{2}{5}\\\\\rm \to\ \dfrac{2}{2+tan^2\theta}=\dfrac{2}{2+3}\\\\\rm \to\ tan^2\theta=3\\\\\rm\to\ tan\theta=\sqrt{3}\\\\\rm\to\ \theta=60^0

So , Angle of projection , θ = α = 60°

Answered by rocky200216
55

\large\mathcal{\underbrace{\red{SOLUTION:-}}}

GIVEN :-

  • A projectile is thrown with some initial Velocity at an angle \rm{\alpha} to the horizontal .

  • It's velocity when it is at the highest point is \rm{\sqrt{\dfrac{2}{5}}} times the velocity when it is at height half of the maximum height .

FORMULA :-

\checkmark\:\rm{\purple{\boxed{Time\:taken\:to\:reach\:maximum\:height\:=\:\dfrac{u^2\:\sin^2\theta}{2g}\:}}}

\checkmark\:\rm{\blue{\boxed{Time\:taken\:to\:reach\:Half\:of\:the\:maximum\:height\:=\:\dfrac{u^2\:\sin^2\theta}{4g}\:}}}

CALCULATION :-

✍️ Let, initial velocity of the projectile motion is ‘u’ .

  • Here, \rm{\underline{\theta\:=\:\alpha}} .

✍️ We have know that, at the maximum height of the projectile motion

  • vertical velocity = 0 m/s

  • And initial velocity = ucos \rm{\alpha}

✍️ Now, vertical velocity at the half of the maximum height is

\rm{\:=\:\sqrt{u^2\:\sin^2\alpha\:-\:2g\:({\dfrac{u\sin{\alpha}}{2g}})\:}}

\rm{\underline{\:=\:\dfrac{u\sin{\alpha}}{\sqrt{2}}\:}}

✴️ So, net velocity at half of the maximum height is

  • \rm{=\:\sqrt{u^2\:\cos^2\alpha\:+\:\dfrac{u^2\:\sin^2\alpha}{2}\:}}

✍️ According to the question,

 u \cos \alpha   =  \sqrt{ \frac{2}{5} }  \sqrt{ {u}^{2} { \cos^2 \alpha  } +  \frac{ {u}^{2} { \sin^2 \alpha  }  }{2}   }  \\  \\  =  >  {u}^{2}  { \cos^2 \alpha  }  =  \frac{2}{5}  {u}^{2} ( { \cos^2 \alpha  }  +  \frac{ { \sin^2 \alpha  } }{2} ) \\  \\  =  >  {u}^{2}  { \cos^2 \alpha  }  =  \frac{2}{5}  {u}^{2} (1 -  { \sin^2 \alpha  }  +  \frac{ { \sin^2 \alpha  } }{2} ) \\  \\  =  > 5(1 -  { \sin^2 \alpha  } ) = 2 -  { \sin^2 \alpha  }   \\  \\   =  > 3 = 4 { \sin^2 \alpha  }  \\  \\  =  >  \sin \alpha   =   \frac{ \sqrt{3} }{2}  \\  \\  =  >  \alpha  =  \frac{ \pi}{3}

\bigstar\:\rm{\green{\boxed{\alpha\:=\:60^{\degree}\:}}}

✍️ Therefore, the angle of projection \rm{\alpha} with the horizontal is ‘60°’ .

Similar questions