Physics, asked by harinisowkya9750, 9 months ago

a projectile just goes over a wall of height h metre and at a distance d metre apart from the point of projectile and later it hits a amrk at a height h metre and distance 2d metre show that the velocity of projectile v is given by - 4v^2\g= 4d^2+9h^2\h

Answers

Answered by saounksh
2

ᴀɴsᴡᴇʀ

ɢɪᴠᴇɴ

  • A projectile pass a point at height 'h' which is at distance 'd' from point of projection.

  • The same projectile pass another point at height 'h' which is at distance '2d' from point of projection.

ᴛᴏ ᴘʀᴏᴠᴇ

  • Velocity of projection is given by

\:\:\:\:\:\:\:\:\:\:\:\: \large{\frac{4u^2}{g} = \frac{4d^2 + 9h^2}{h}}

ғᴏʀᴍᴜʟᴀ

  • Equation of trajectory of a projectile is given by

\:\:\:\:\boxed{\green{y = [tan(\theta)]x - \left[\frac{g}{2u^2cos^2(\theta)} \right]x^2}}

ᴘʀᴏᴏғ

Since the particle pass through (d, h), using the trajectory equation,

\to h = [tan(\theta)]d - \left[\frac{g}{2u^2cos^2(\theta)} \right]d^2

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-----(1)

Also, the particle pass through (2d, h) so

\to h = 2[tan(\theta)]d - 4\left[\frac{g}{2u^2cos^2(\theta)} \right]d^2

 \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-----(2)

Multiplying (1) by 2 and substracting (2), we get

 \to h = \left[\frac{(-2+4)g}{2u^2cos^2(\theta)}\right]d^2

 \to h = \left[\frac{(-2+4)g}{2u^2cos^2(\theta)}\right]d^2

 \to h = \left[\frac{2gd^2}{2u^2cos^2(\theta)}\right]

 \to cos^2(\theta) = \left[\frac{gd^2}{u^2h}\right]

 \to cos(\theta) =\sqrt{\left[\frac{gd^2}{u^2h}\right]}

 \to tan(\theta) =\frac{\sqrt{u^2h - d^2g}} {\sqrt{d^2g} }

Substituting these values in (1), we get

 \to h = \frac{\sqrt{u^2h - d^2g}} {\sqrt{d^2g}}d - \left[\frac{g}{2u^2\left(\frac{gd^2}{u^2h} \right)} \right]d^2

\to h = \frac{\sqrt{u^2h - d^2g}} {d\sqrt{g}}d - \frac{h}{2}

 \to h+\frac{h}{2}= \frac{\sqrt{u^2h - d^2g}} {\sqrt{g}}

 \to (\frac{3h}{2})^2 = \frac{u^2h}{g} - d^2

 \to (\frac{3h}{2})^2 + d^2 = \frac{u^2h}{g}

 \to 9h^2 + 4d^2 = 4\frac{u^2h}{g}

 \to \boxed{\blue{\frac{4u^2}{g} = \frac{4d^2 + 9h^2}{h}}}

Similar questions