Physics, asked by ShubKr, 5 months ago

A projectile thrown with velocity v at an angle....

Attachments:

Answers

Answered by Cosmique
8

Question:

A projectile is thrown with velocity v at an angle θ with horizontal. When the projectile is at a height equal to half of the maximum height, the vertical component of the velocity of projectile is

 \sf{(1) \:v \: sin \:  \theta \times 3 }

 \sf{(2) \:  \dfrac{v \: sin \: \theta}{3} }

 \sf{ (3) \: \dfrac{v \: sin \:  \theta}{ \sqrt{2} } }

 \sf{(4) \:  \dfrac{v \: sin  \:  \theta}{ \sqrt{3} }}

Answer:

Correct option is

 \sf{ (3) \: \dfrac{v \: sin \:  \theta}{ \sqrt{2} } }

Solution:

  • projectile is thrown with a velocity = v
  • angle of projection = θ

Let, the maximum height covered by projectile be \sf{h_m}

then, Using the formula for maximum height covered by a projectile

 \longmapsto \sf{h_m =  \dfrac{ {v}^{2} \: {sin}^{2} \theta  }{2g} } \quad \: eqn(1)

Now, Let velocity of projectile at a height half of the maximum height covered be

 \sf{v_0}

then, again using the formula for maximum height

 \longmapsto \sf{ \dfrac{h_m}{2}  = \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }

Using equation (1)

 \longmapsto \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{2g} \times  \dfrac{1}{2}  =  \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }

 \longmapsto \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{4g}  =  \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }

 \longmapsto \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{2}  =   {v_0}^{2} \: {sin}^{2} \theta }

 \longmapsto \sf{ \dfrac{ {v}^{2} }{2}  =   {v_0}^{2} }

 \longmapsto \sf{v_0 =   \sqrt{ \dfrac{ {v}^{2} }{2} } =  \dfrac{v}{ \sqrt{2} }  }

Now, the vertical component of velocity of projectile at the height half of  \sf{h_m} will be,

 \longmapsto \sf{v_{(y)}=v_0 \: sin \theta }

 \longmapsto \sf{v_{(y)} = \dfrac{v}{ \sqrt{2} }  \: sin \theta =  \dfrac{v \: sin \: \theta}{ \sqrt{2} }  }

Therefore, the vertical component of velocity of projectile at this height will be

 \sf{ \dfrac{v \: sin \:  \theta}{ \sqrt{2} } }

Hence, Option (3) is correct.


amansharma264: great
Similar questions