Math, asked by hy180444, 11 months ago

A
Prove the following identities.
A + tan A cosec A - cot A
à
- tan
cosec A+ cot A
tan At co​

Attachments:

Answers

Answered by Anonymous
119

Question :

Prove that :-

\sf\dfrac{SecA+TanA}{CosecA+CotA} = \sf\dfrac{CosecA-CotA}{SecA-TanA}

Solution :

We know that,

sec²A - Tan²A = 1

(a + b)(a - b) = -

(SecA - TanA)(SecA + TanA) = 1

\implies SecA + TanA = \sf\dfrac{1}{SecA-TanA} _________(1)

Also,

Cosec²A - Cot²A = 1

(a + b)(a - b) = a² - b²

(CosecA - CotA)(CosecA + CotA) = 1

\implies CosecA + CotA = \sf\dfrac{1}{CosecA-CotA} __________(2)

___________________

LHS :

Put the value of (1) and (2) in LHS,

\implies \sf\dfrac{SecA+TanA}{CosecA+CotA}

\implies \sf\dfrac{\frac{1}{secA-TanA}}{\frac{1}{cosecA-CotA}}

\implies \sf\dfrac{1}{SecA-TanA} × \sf\dfrac{CosecA-CotA}{1}

\implies \sf\dfrac{CosecA-CotA}{SecA-TanA}

\implies RHS

Hence proved!

Similar questions