A
Prove the following identities.
A + tan A cosec A - cot A
à
- tan
cosec A+ cot A
tan At co
Attachments:
Answers
Answered by
119
Question :
Prove that :-
=
Solution :
We know that,
sec²A - Tan²A = 1
∵ (a + b)(a - b) = a² - b²
(SecA - TanA)(SecA + TanA) = 1
SecA + TanA = _________(1)
Also,
Cosec²A - Cot²A = 1
∵ (a + b)(a - b) = a² - b²
(CosecA - CotA)(CosecA + CotA) = 1
CosecA + CotA = __________(2)
___________________
LHS :
Put the value of (1) and (2) in LHS,
×
RHS
Hence proved!
Similar questions