Math, asked by kushal99456, 1 year ago

A pt. R with x coordinates 4 lies on the line segment joining the points P(2,-3,-4) and Q(8,0,10). Find the coordinates of the pt. R.

Answers

Answered by Anonymous
12
Before moving onto the answer, let's see:

\sf{\underline{What\:is\:a\:Section\:Formula?}}

The coordinates of the pt. R which divides the line segment joining 2 points \sf{P(x_{1}, y_{1}, z_{1})} and \sf{Q(x_{2}, y_{2}, z_{2})} internally in the ratio m:n are:

\boxed{( \frac{mx_{2} + nx_{1}}{m + n}, \frac{my_{2} + ny_{1} }{m + n}, \frac{mz_{2} + nz_{1} }{m + n} )}


Now,

Suppose R divides PQ in the ratio k:1, then, by section formula, the coordinates of R:

\boxed{R\:( \frac{8k + 2}{k + 1}\:, \frac{ - 3}{k + 1}\:, \frac{10k + 4}{k + 1} )}


\sf{\underline{Values:}}

\sf{P\:(2,-3,4)}

\sf{x_{1}= 2,\: y_{1} = - 3,\: z_{1} = 4}

\sf{Q\:(8,0,10)}

\sf{x_{2}= 8,\: y_{2} = 0,\: z_{2} = 10}

\boxed{m = k,\:n = 1}

\sf{\underline{Since:}}

(i) \sf{\underline{x\:co-ordinate\:of\:R\:is\:4:}}

\implies  \frac{8k + 2}{k + 1} = 4

\implies 8k + 2 = 4(k + 1)

\implies 8k - 4k = 4 - 2

\implies 4k = 2

\implies k = \frac{2}{4}

\implies k = \boxed{\frac{1}{2}}


(ii) \sf{\underline{y\:co-ordinate\:of\:R:}}

Putting k = \frac{1}{2}

\implies  \frac{ - 3}{k + 1} = \frac{ - 3}{( \frac{1}{2} + 1) }

\implies  \frac{ - 3}{ \frac{3}{2} }

\implies  - 3 \times \frac{2}{3}

\implies \boxed{- 2}


(iii) \sf{\underline{z\:co-ordinate\:of\:R:}}

Putting k = \frac{1}{2}

\implies  \frac{10k + 4}{k + 1} = \frac{10( \frac{1}{2}) + 4 }{ (\frac{1}{2}) + 1}

\implies  \frac{9}{ \frac{3}{2} }

\implies  9 \times \frac{2}{3}

\implies  3 \times 2

\implies \boxed{6}


\sf{\underline{We\:know\:that:}}

x = 4, y = - 2, z = 6


\sf{\underline{Therefore:}}

The coordinates of pt. R (4, - 2, 6)

sakshi7048: nice explanation...✌
Anonymous: Thank you!☺️
Answered by patiparmeshwar
0

A pt. R with x coordinates 4 lies on the line segment joining the points P(2,-3,-4) and Q(8,0,10). Find the coordinates of the pt. R.

Similar questions