A quadratic equation whose one root is 3 and the sum of
the roots is zero is zero find the quadratic equation
O
X^2+9=0
x^2-9=0
9x^2+1=0
9x^2-1=0
Answers
Aɴsᴡᴇʀ :-
Gɪᴠᴇɴ :-
Tᴏ Fɪɴᴅ :-
- The quadratic equation.
Sᴏʟᴜᴛɪᴏɴ :-
- Let α be the one root of the equation and be the other root.
- If and are the zeroes of the quadratic equation then quadratic equation will be :
[ From equation 1 and 2 ]
- Hence the quadratic equation is x² - 9 = 0.
Answer:
Aɴsᴡᴇʀ :-
\sf\large\orange{ {x}^{2} - 9 = 0 }x
2
−9=0
Gɪᴠᴇɴ :-
\sf\large\green{ \alpha = 3 \: ,\alpha + \beta = 0}α=3,α+β=0
Tᴏ Fɪɴᴅ :-
The quadratic equation.
Sᴏʟᴜᴛɪᴏɴ :-
Let α be the one root of the equation and {\beta}β be the other root.
\sf\large\purple{ ➯\: \alpha + \beta = 0}➯α+β=0
\sf\large\purple{ ➯\: 3 + \beta = 0}➯3+β=0
\sf\large\purple{ ➯\: \beta = - 3}➯β=−3
\sf\large{The \: value \: of \: \alpha = 3 \: and \: \beta = - 3........(1)}Thevalueofα=3andβ=−3........(1)
\sf\large{Product \: of \: zeroes\: = \alpha \times \beta }Productofzeroes=α×β
\sf\large\purple{ ➯ \: \alpha \times \beta = 3 \times - 3 }➯α×β=3×−3
\sf\large\purple{ ➯\: \alpha \beta = - 9.........(2) }➯αβ=−9.........(2)
If \sf{ \alpha }α and \sf{ \beta }β are the zeroes of the quadratic equation then quadratic equation will be :
\sf\large\blue{ → [{x}^{2} - ( \alpha + \beta )x + \alpha \beta] }→[x
2
−(α+β)x+αβ]
\sf\large\blue{ → {x}^{2} - ( 3 - 3)x + ( - 9) }→x
2
−(3−3)x+(−9)
[ From equation 1 and 2 ]
\sf\large\pink{→ {x}^{2} - 0 \times x - 9 }→x
2
−0×x−9
\sf\large\pink{ → {x}^{2} - 9 = 0 }→x
2
−9=0
Hence the quadratic equation is x² - 9 = 0.