Math, asked by prabhumaurya93, 9 months ago

A quadratic equation whose one root is 3 and the sum of
the roots is zero is zero find the quadratic equation
O
X^2+9=0
x^2-9=0
9x^2+1=0
9x^2-1=0​

Answers

Answered by Anonymous
15

Aɴsʀ :-

  •  \sf\large\orange{  {x}^{2}  - 9 = 0 }

Gɪɴ :-

  •  \sf\large\green{ \alpha  = 3 \:  ,\alpha  +  \beta  = 0}

T Fɪɴ :-

  • The quadratic equation.

Sʟɪɴ :-

  • Let α be the one root of the equation and  {\beta} be the other root.

 \sf\large\purple{ ➯\: \alpha  +  \beta  = 0}

 \sf\large\purple{ ➯\: 3  +  \beta  = 0}

 \sf\large\purple{ ➯\: \beta  =  - 3}

  •  \sf\large{The \: value \: of \:  \alpha  = 3 \: and \:  \beta  =  - 3........(1)}

  •  \sf\large{Product \: of \: zeroes\:   =  \alpha  \times  \beta }

 \sf\large\purple{ ➯ \: \alpha  \times  \beta = 3 \times  - 3 }

 \sf\large\purple{ ➯\:  \alpha  \beta =  - 9.........(2) }

  • If  \sf{ \alpha  } and  \sf{  \beta } are the zeroes of the quadratic equation then quadratic equation will be :

 \sf\large\blue{ → [{x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta] }

 \sf\large\blue{ → {x}^{2}  - ( 3    - 3)x + ( - 9) }

[ From equation 1 and 2 ]

 \sf\large\pink{→ {x}^{2}  - 0 \times x - 9 }

 \sf\large\pink{ → {x}^{2}  - 9 = 0 }

  • Hence the quadratic equation is x² - 9 = 0.
Answered by Anonymous
4

Answer:

Aɴsᴡᴇʀ :-

\sf\large\orange{ {x}^{2} - 9 = 0 }x

2

−9=0

Gɪᴠᴇɴ :-

\sf\large\green{ \alpha = 3 \: ,\alpha + \beta = 0}α=3,α+β=0

Tᴏ Fɪɴᴅ :-

The quadratic equation.

Sᴏʟᴜᴛɪᴏɴ :-

Let α be the one root of the equation and {\beta}β be the other root.

\sf\large\purple{ ➯\: \alpha + \beta = 0}➯α+β=0

\sf\large\purple{ ➯\: 3 + \beta = 0}➯3+β=0

\sf\large\purple{ ➯\: \beta = - 3}➯β=−3

\sf\large{The \: value \: of \: \alpha = 3 \: and \: \beta = - 3........(1)}Thevalueofα=3andβ=−3........(1)

\sf\large{Product \: of \: zeroes\: = \alpha \times \beta }Productofzeroes=α×β

\sf\large\purple{ ➯ \: \alpha \times \beta = 3 \times - 3 }➯α×β=3×−3

\sf\large\purple{ ➯\: \alpha \beta = - 9.........(2) }➯αβ=−9.........(2)

If \sf{ \alpha }α and \sf{ \beta }β are the zeroes of the quadratic equation then quadratic equation will be :

\sf\large\blue{ → [{x}^{2} - ( \alpha + \beta )x + \alpha \beta] }→[x

2

−(α+β)x+αβ]

\sf\large\blue{ → {x}^{2} - ( 3 - 3)x + ( - 9) }→x

2

−(3−3)x+(−9)

[ From equation 1 and 2 ]

\sf\large\pink{→ {x}^{2} - 0 \times x - 9 }→x

2

−0×x−9

\sf\large\pink{ → {x}^{2} - 9 = 0 }→x

2

−9=0

Hence the quadratic equation is x² - 9 = 0.

Similar questions