Math, asked by chintugaming113, 1 month ago

A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, then find the other zero.​

Attachments:

Answers

Answered by Anonymous
7

\footnotesize\tt\red{Given:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{ \alpha  = 3}

 \red \dashrightarrow \footnotesize \tt{Sum  \: of \:  zeros  = 0}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt\red{Let \:  zeros \:  be \:  \alpha  \: and \: \beta}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{Sum  \: of \:  zeros  = 0}

 \red \dashrightarrow \footnotesize \tt{ \alpha \:  +  \beta  = 0}

 \red \dashrightarrow \footnotesize \tt{ 3 +  \beta  = 0}

 \red \dashrightarrow \footnotesize \tt{   \beta  = 0 - 3}

\boxed{ \underline{ \underline{ \red \dashrightarrow\footnotesize \tt{   \beta  =  - 3}}}}  \: \bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{ \underline{ \underline{ \red \dashrightarrow\footnotesize \tt{   Other \:  zero  \: is \:  -3}}}}  \: \bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize\tt\red{Second  \: way  \: to  \: solve  \: this \:  question}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Product  \: of \:  zeros}

 \red \dashrightarrow \footnotesize \tt{ \alpha\beta }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{ Substitute \:  the  \: value \:  of  \: \alpha  \: and \:  \beta}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{( - 3)(3)}

 \red \dashrightarrow \footnotesize \tt{ - 9}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{ \underline{ \underline{ \red \dashrightarrow\footnotesize \tt{   Sum  \: of \:  zeros   = 0}}}}  \: \bigstar

\boxed{ \underline{ \underline{ \red \dashrightarrow\footnotesize \tt{   Product  \: of \:  zeros   =  - 9}}}}  \: \bigstar

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{  {x}^{2}   - Sum \: of \: zeros (x) + Product \: of \: zeros}

 \red \dashrightarrow \footnotesize \tt{  {x}^{2}   - 0(x) +  ( - 9)}

 \red \dashrightarrow \footnotesize \tt{  {x}^{2}   - 9}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \red \dashrightarrow \footnotesize \tt{  {x}^{2}   - 9 = 0}

 \red \dashrightarrow \footnotesize \tt{  (x - 3)(x + 3)= 0}

 \red \dashrightarrow \footnotesize \tt{  x - 3= 0 \:  \:  \: \:  \:  \:  \:  \:  \:  \:   | \:  \:  \:  \: \:  \:  \:  \:  \:  x + 3 = 0}

 \red \dashrightarrow \footnotesize \tt{  x  = 3 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \ | \:  \:  \:  \: \:  \:  \:  \:  \:  x  =  - 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\boxed{ \underline{ \underline{ \red \dashrightarrow\footnotesize \tt{   Other \:  zero  \: is \:  -3}}}}  \: \bigstar

Answered by swatimishra262008
0

Answer:

Given : Sum of the zeroes (α + β) = 0 and one zero (α) = 3 . On substituting β = - 3 in eq 1 . Hence, the required quadratic polynomial is x² - 9

hope it's helpful

Similar questions