Math, asked by sanakasgar172972, 2 months ago

A quadratic polynomial, whose zeroes are -3 and 4, is (a) x²- x + 12 (b) x² - x - 12 (c) 2x² - 2x – 12 (d) 2x² + 2x – 24

Answers

Answered by amansharma264
217

EXPLANATION.

Quadratic polynomial.

Whose zeroes are = - 3 and 4.

As we know that,

Let one zeroes be = - 3 = α.

Other zeroes be = 4 = β.

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ (-3) + (4) = 1.

⇒ α + β = 1. - - - - - (1).

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ (-3) x (4) = - 12.

⇒ αβ = - 12.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (1)x + (-12).

⇒ x² - x - 12.

Option [B] is correct answer.

                                                                                                                   

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by Itzheartcracer
209

Given :-

A quadratic polynomial, whose zeroes are -3 and 4

To Find :-

Quadratic polynomial

Solution :-

Sum of zeroes = α + β

Sum = -3 + 4

Sum = 1

Product of zeroes = αβ

Product = -3 × 4

Product = -12

Now,

Standard form of quadratic polynomial = x² - (α + β)x + αβ

Quadratic polynomial = x² - (1)x + (-12)

Quadratic polynomial = x² - x - 12

Therefore

Option B is correct

V e r i f i c a t i o n :

x² - x - 12

x² - (4x - 3x) - 12

x² - 4x + 3x - 12

x(x - 4) + 3(x - 4)

(x - 4)(x + 3)

Either

x - 4 = 0

x = 4

or,

x + 3 = 0

x = -3

Similar questions