Math, asked by kk3924290, 9 months ago

A quadrilateral ABCD has all its four angles of the same measure. What is the measure of each angle?​

Answers

Answered by akhare0207
5

Answer:

90 degrees

Step-by-step explanation:

Lets angles of quadrilateral ABCD be a,b,c and d

According to given condition a=b=c=d

a+b+c+d = 360 (Sum of all angles of a quadrilateral is 360 degrees)

4d = 360 (Since a=b=c=d)

d = 360/4 = 90 degrees

Therefore a=b=c=d = 90 degrees

a = 90, b = 90, c = 90, d = 90

Therefore measure of each angle is 90 degrees

Answered by Anonymous
6

\red{\underline{\underline{\textsf{\red{Given}}}}}

\sf{All\: four \:angles\: are\: same}

\red{\underline{\underline{\textsf{\red{To find:}}}}}

\sf{The \:measure \:of\: each\: angle}

\red{\underline{\underline{\textsf{\red{Concept: }}}}}

\small\begin{gathered}\begin{gathered}\\\;\underline{\boxed{\sf\;The\: sum \:of \:the \:angles\: of\: a \:quadrilateral =360^0}}\end{gathered} \end{gathered}

\red{\underline{\underline{\textsf{\red{Solution: }}}}}

\sf{Let\: the \:one\: angle\: be \:x}

\sf{x+x+x+x =360^0}

\sf{4x=360^0}

\sf{x=90^0}

\sf{Hence, \:each \:angle \:is\: equal\: to\: 90^0}

Answered by Anonymous
10

\red{\underline{\underline{\textsf{\red{Given}}}}}

\sf{All\: four \:angles\: are\: same}

\red{\underline{\underline{\textsf{\red{To find:}}}}}

\sf{The \:measure \:of\: each\: angle}

\red{\underline{\underline{\textsf{\red{Concept: }}}}}

\small\begin{gathered}\begin{gathered}\\\;\underline{\boxed{\sf\;The\: sum \:of \:the \:angles\: of\: a \:quadrilateral =360^0}}\end{gathered} \end{gathered}

\red{\underline{\underline{\textsf{\red{Solution: }}}}}

\sf{Let\: the \:one\: angle\: be \:x}

\sf{x+x+x+x =360^0}

\sf{4x=360^0}

\sf{x=90^0}

\sf{Hence, \:each \:angle \:is\: equal\: to\: 90^0}

Similar questions