Math, asked by sivakaaviya5177, 11 months ago

A quadrilateral ABCD is drawn to circumscibe a circle . Proof that AB+CD=AD+BC

Answers

Answered by modi1376
6

Step-by-step explanation:

wkt \\  \\ the \: lenght \: of \: tangents \: drawn \\from \: an \: external \: point \: o \: the \: circle \: are \: equal \\  \\ dr = ds = > 1 \\ cr = cq =  > 2 \\ bp = bq =  > 3 \\ ap = as =  > 4 \\ adding \: 1 \: 2 \: 3 \: 4 \\ (dr + cr) + (bp + ap ) = (ds + cq) + (bq +  as) \\ bc \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \:  \:  +  \:  \:  \: ad \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: =  \:  \:  \:  \:  \: dc \:  \:  \:  \:  \:  \:  \:  +  \:  \:  \:  \: ba \\ hence \: proved

from the figure

Similar questions