Math, asked by ayushmangupta892, 4 months ago

a quadrilateral has
vertices of a parallelogram.
21 A quadrilateral has vertices (4, 1), (1,7), (-60) and (-1, - 9). Show that the mid-points of
the sides of this quadrilateral form a parallelogram,​

Attachments:

Answers

Answered by SSkk53710
1

For More ANSWER Follow me Dude's ⏬....Now..

MARK IN BRAIN LIST

Attachments:
Answered by mathdude500
4

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

\boxed{ \large{ \mathfrak{Given :- }}}

A quadrilateral having vertices (4, 1), (1,7), (-60) and (-1, - 9).

\boxed{ \large{ \mathfrak{To Show :- }}}

The mid-points ofthe sides of this quadrilateral form a parallelogram.

\large\bold\red{Formula \:  used } \\ \boxed{ \large{ {Slope  \: of  \: line \:  =  \frac{y_2  - y_1}{x_2  - x_1 }  }}}

Solution :-

Let us suppose a quadrilateral ABCD having vertices A(4, 1), B(1, 7), C(- 6, 0) and D(- 1, -9)

Let P, Q, R and S be the midpoints of AB, BC, CD & DA respectively.

Coordinates  \: of \:  P \\  = Midpoint  \: of \:  AB  \\ = (  \frac{4 + 1}{2} ,  \frac{1 + 7}{2} )  \\ =   (  \frac{5}{2}   , 4)

Coordinates  \: of \:  Q \\  = Midpoint  \: of \:  BC  \\ = (  \frac{ - 6 + 1}{2} ,  \frac{0 + 7}{2} )  \\ =   (  \frac{ - 5}{2}   ,  \frac{7}{2} )

Coordinates  \: of \: R  \\  = Midpoint  \: of \:  CD  \\ = (  \frac{ - 6  - 1}{2} ,  \frac{0  - 9}{2} )  \\ =   (  \frac{ - 7}{2}   ,  \frac{ - 9}{2} )

Coordinates  \: of \:   S\\  = Midpoint  \: of \:  AD  \\ = (  \frac{4  -  1}{2} ,  \frac{1  - 9}{2} )  \\ =   (  \frac{3}{2}   ,  - 4)

Slope of PQ =  \frac{y_2  - y_1}{x_2  - x_1 }  \\  =  \frac{ \frac{7}{2} - 4 }{ \frac{ - 5}{2}  -  \frac{5}{2} }  \\  =  \frac{ \frac{ - 1}{2} }{ \frac{ - 10}{2} }  =  \frac{1}{10}

Slope of RS =  \frac{y_2  - y_1}{x_2  - x_1 }  \\  =  \frac{ - 4  -   \frac{ - 9}{2} }{ \frac{3}{2} -  \frac{ - 7}{2}  }  \\  =  \frac{ \frac{1}{2} }{ \frac{10}{2} }  =  \frac{1}{10}

Since, slope of PQ = Slope of RS

∴ PQ || RS

Slope of  QR=  \frac{y_2  - y_1}{x_2  - x_1 }  \\  =  \frac{ \frac{7}{2} -  \frac{ - 9}{2}  }{ \frac{ - 5}{2} -  \frac{ - 7}{2}  }  \\  =  \frac{ \frac{16}{2} }{ \frac{2}{2} }  = 8

Slope of  PS=  \frac{y_2  - y_1}{x_2  - x_1 }  \\  =  \frac{4 - ( - 4)}{ \frac{5}{2}  -  \frac{3}{2} }  \\  = 8

Since, Slope of QR = Slope of PS

∴ QR || PS

Now, PQ || RS & QR || PS

∴ PQRS is a parallelogram.

\boxed{ \huge{ \mathfrak{Mark \:  me \:  as  \: Brainliest}}}

Similar questions