A quadrilateral polynomial whose zeroes are - 3 and 4 is
Answers
Answer:
Answer:Α = -3
Answer:Α = -3β = 4
Answer:Α = -3β = 4Now,
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a}
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a}
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now,
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a}
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a} -12= \frac{c}{a}
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a} -12= \frac{c}{a} Therefore, c= -12.
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a} -12= \frac{c}{a} Therefore, c= -12.We know standard form of a quadratic polynomial = a x^{2} +bx+c
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a} -12= \frac{c}{a} Therefore, c= -12.We know standard form of a quadratic polynomial = a x^{2} +bx+cHence required polynomial= x^{2} -x-12
Answer:Α = -3β = 4Now, \alpha + \beta = \frac{-b}{a} -3+4 = \frac{-b}{a} \frac{-b}{a} = 1Therefore,b= -1 , a=1Now, \alpha * \beta = \frac{c}{a} -12= \frac{c}{a} Therefore, c= -12.We know standard form of a quadratic polynomial = a x^{2} +bx+cHence required polynomial= x^{2} -x-12Hope it helped. Do check my calculations! ;P
Answer:
Step-by-step explanation:
given: zeroes are -3, 4
=>α=-3 β=4
=>-b/a=α+β=4-3=1/1
=>b=-1, a=1
c/a=αβ=4(-3)=-12
∴ the Q.E. is