A quaduatic polynomial having roots 1/5
and 1/4
is
Answers
Answer:
The quadratic polynomial whose zeros are -1/4 and 1/4 is:
Solution:
Given that,
We have to find the quadratic polynomial whose zeros are -1/4 and 1/4
The quadratic equation is given as:
Find the sum of zeros
Find the product of zeros
Therefore,
Thus the equation is found
Learn more about this topic
Find a quadratic polynomial with zeros −2 and 1/3.
brainly.in/question/5482804
Find a quadratic polynomial whose zeros are - 12 and 4 and verify the relationship between zeros and the coefficient
Step-by-step explanation:
Step-by-step explanation:
Sum of zeroes:
1/4+1/5=9/20
Product of zeroes: 1/4×1/5=1/20
Condition to find the quadratic polynomial is x^2-sum of zeroes×x + product of zeroes
So, the quadratic polynomial is 20x^2-9x+1