Physics, asked by nileshgkny, 4 months ago

A quartz crystal of thickness 1 mm is vibrating at resonance. Calculate the
fundamental frequency. Given Y for quartz =
7.9 \times  {10}^{10}
Nm-2 and p for quartz
= 2650 kg m-3.​

Answers

Answered by TheValkyrie
20

Answer:

Fundamental frequency = 2.72947 × 10⁶ Hz

Explanation:

Given:

  • Thickness of the quartz crystal = 1 mm = 10⁻³m
  • Y of quartz = 7.9 × 10¹⁰ N/m²
  • ρ of quartz = 2650 kg/m³

To Find:

  • The fundamental frequency

Solution:

Here given that the quartz crystal is vibrating at resonance.

The fundamental frequency is given by,

\sf Fundamental\:frequency=\dfrac{v}{2t}

where v is the velocity and t is the thickness.

We know that,

\sf v=\sqrt{\dfrac{Y}{\rho} }

where Y is the Young's modulus and ρ is the density of the solid.

Substituting the data we get,

\sf v =\sqrt{\dfrac{7.9\times 10^{10} }{2650} }

\sf v = \sqrt{2.98\times 10^{7} }

\sf v = 5458.94\:m/s

Substitute the value of v in the above equation,

\sf Fundamental\:frequency=\dfrac{5458.94}{2\times 10^{-3} }

\sf \implies 2729.47 \times 10^{3} \: Hz

\sf \implies 2.72947\times 10^{6} \:Hz

Hence the fundamental frequency is 2.72947 × 10⁶ Hz.


Cosmique: Keep it up!! •,•
TheValkyrie: Thank you! :p
Answered by Anonymous
6

\: \: \: \: \:{\large{\bold{\sf{\underline{Correct \; Question}}}}}

A quartz crystal of thickness 1 mm is vibrating at resonance. Calculate the

fundamental frequency. Given Y for quartz = 7.9 × 10¹⁰ N/m² and ρ for quartz = 2650 kg/m³

{\large{\bold{\sf{\underline{Given \; that}}}}}

{\bullet} A quartz crystal of thickness 1 mm

{\bullet} Quartz's Y = 7.9 × 10¹⁰ N/m²

{\bullet} Quartz's ρ = 2650 kg/m³

{\large{\bold{\sf{\underline{To \; calculate}}}}}

{\bullet} Fundamental frequency

{\large{\bold{\sf{\underline{Solution}}}}}

{\bullet} Fundamental frequency = 2.72947 × 10⁶ Hz

{\large{\bold{\sf{\underline{Using \; concept}}}}}

{\bullet} Fundamental frequency

{\bullet} Velocity ( Fundamental frequency )

{\large{\bold{\sf{\underline{Using \; rule}}}}}

{\bullet} \; \: \; \; \; \;{\boxed{\boxed{\rm{Fundamental \; frequency = \dfrac{v}{2t}}}}}

Where,

• v denotes velocity.

• t denotes thickness.

{\bullet} \; \; \; \; \; \;{\boxed{\boxed{\rm{v=\sqrt \dfrac{Y}{\rho}}}}}

Where,

• Y denotes Young's modulus

• ρ denotes Solid density

{\large{\bold{\sf{\underline{Full \; Solution}}}}}

~ Using formula let's put the values and find the fundamental frequency !

\; \; \; \; \; \;{\bf{\longmapsto v=\sqrt \dfrac{Y}{\rho}}}

\; \: \; \; \; \;{\bf{\longmapsto \sqrt \dfrac{7.9\times 10^{10}}{2650}}}

\; \; \; \; \; \;{\bf{\longmapsto v = \sqrt 2.98\times 10^{7}}}

\; \: \; \; \; \;{\bf{\longmapsto v = 5458.94 \; m/s}}

~ Now let's substitute the value of v as 5458.94

\; \: \; \; \; \;{\bf{\longmapsto Fundamental \: frequency = \dfrac{5458.94}{2\times 10^{-3}}}}

\; \: \; \; \; \;{\bf{\longmapsto Fundamental \: frequency = 2729.47 \times 10^{3} \: Hz}}

\; \: \; \; \; \;{\bf{\longmapsto Fundamental \: frequency =2.72947\times 10^{6} \:Hz}}

{\pink{\frak{Henceforth, \: 2.72947 \times 10^{6} \: Hz \: is \: the \: fundamental \: frequency}}}


Cosmique: Nice!
Similar questions