Physics, asked by sharanyalanka7, 2 months ago

A quartz vessel contains dry air with pressure 750 mm of Hg at 251 K. The vessel can with stand up to a pressure of 1150 mm of Hg. The temperature without breaking the vessel. (Pressure coefficient of air is0.00366/°C (or) 1/273/°C )

Answers

Answered by ғɪɴɴвαłσℜ
11

\sf{\huge{\boxed{\purple{Correct\: Question? }}}}

  • Refers to the attachment; {Source Provided by the asker }

\huge\bf\pink{\mid{\overline{\underline{Given :- }}}\mid}

  • A quartz vessel contains dry air with pressure 750 mm of Hg at 251 K.

  • The vessel can with stand up to a pressure of 1150 mm of Hg.

  • Pressure coefficient of air is0.00366/°C

\huge\bf\orange{\mid{\overline{\underline{To\:Find :- }}}\mid}

  • The temperature without breaking the vessel.

\huge\bf\red{\mid{\overline{\underline{Answer :- }}}\mid}

According to the question,

A quartz vessel contains dry air with pressure 750 mm of Hg at 251 K.

Here , we have to use the unitary method.

750 mm of Hg ➝ 251 K

1 mm of Hg = 251/750

The vessel can with stand up to a pressure of 1150 mm of Hg.

So, For 1150 mm of Hg

➝ 1150 × 251/750

➝ 1.5 × 251

384 K

We know that converting,

K to C

°C = (K - 273)

384 K

➝ (384 - 273)

111°C

Hence, Option.C) 111°C is the temperature without breaking the vessel.

Attachments:
Answered by XxHappiestWriterxX
33

Question :

A quartz vessel contains dry air with pressure 750 mm of Hg at 251 K. The vessel can with stand up to a pressure of 1150 mm of Hg. The temperature without breaking the vessel. (Pressure coefficient of air is0.00366/°C (or) 1/273/°C )

Given :

  • A quartz vessel contains dry air with pressure 750 mm of Hg at 251 K.

  • The vessel can with stand up to a pressure of 1150 mm of Hg.

To find :

  • The temperature without breaking the vessel. (Pressure coefficient of air is0.00366/°C (or) 1/273/°C )

Concept :

  • Temperature is an objective measurement of how hot or cold an object is.

  • It can be measured with a thermometer or a calorimeter.

  • It is a means of determining the internal energy contained within a given system

Let's start :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \rightarrow \sf750 \:  mm  \: of  \: Hg = 251 k

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \rightarrow\sf1 \:  mm  \: of  \: Hg = \frac{251}{750}

  • So, for 1150 mm of Hg

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow \sf1150 \times  \frac{251}{750}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow \sf1.5 \times 251

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow \sf348k

Now Converting K to C

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow \sf℃ = ( K - 273 )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow \sf38k

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rightarrow  \sf(384 - 273)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \underline {\underline{ \pink{\sf111 \degree \: c}}}}

So your answer is done mate :)

Attachments:
Similar questions