Math, asked by Anonymous, 3 months ago

a question for stars/mods

refer the attachment
answer asap​

Attachments:

Answers

Answered by mathdude500
29

Tᴏ Fɪɴᴅ :-

  • Distance of the cloud from observation point. (CP)

Cᴀʟᴄᴜʟᴀᴛɪᴏɴ :

Let AB be the surface of lake

Let P be any point 'h' meter above the lake level.

Let cloud is at the point C

Let D be the reflection of cloud in lake so that BD = BC

Now,

  • Angle of elevation of the cloud from P be α, and angle of depression from point P of its reflection be β.

Let

  • CE = x meter

  • PE = y meter

  • DE = BD + DE = h + x + h = 2h + x meter

Now,

\rm :\longmapsto\:In \: \triangle \:  CPE

\rm :\longmapsto\:tan \alpha  = \dfrac{CE}{PE}

\rm :\longmapsto\:tan \alpha  = \dfrac{x}{y}

\bf\implies \:x= y \: tan \alpha  -  -  - (1)

Now,

\rm :\longmapsto\:In \: \triangle \: DEP

\rm :\longmapsto\:tan \beta  = \dfrac{DE}{EP}

\rm :\longmapsto\:tan \beta  = \dfrac{2h + x}{y}

\rm :\longmapsto\:tan \beta  = \dfrac{2h + ytan \alpha }{y}  \:  \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\:ytan \beta  = 2h + ytan \alpha

\rm :\longmapsto\:ytan \beta  -  ytan \alpha  = 2h

\rm :\longmapsto\:y(tan \beta  -  tan \alpha) = 2h

\bf\implies \:y = \dfrac{2h}{tan \beta  - tan \alpha }  -  -  - (2)

Again,

\rm :\longmapsto\:In \: \triangle  \: CPE

\rm :\longmapsto\:sec \alpha  = \dfrac{CP}{PE}

\rm :\longmapsto\:sec \alpha  = \dfrac{CP}{y}

\rm :\longmapsto\:CP = ysec \alpha

\rm :\longmapsto\:CP = \dfrac{2h \: sec \alpha }{tan \beta  - tan \alpha } \:  \:  \:  \:  \:  \:  \:  \:  \:   \{using \: (2) \}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Answered by studylover001
12

Answer:

The answer of the question is above

Hope it helps you

Attachments:
Similar questions