Math, asked by Asbaa, 9 months ago

A r.v. X assumes values 1, 2, 3, n with equal probabilities. (i) If the ratio of Var (X) to E(X) is equal to 4, find n. (ii) What will be n if Var (X) = E(X)?

Answers

Answered by amitnrw
2

Given :   A r.v. X assumes values 1, 2, 3, n with equal probabilities.

(i) If the ratio of Var (X) to E(X) is equal to 4

ii)  Var (X) = E(X

To find : Value of n

Solution:

Probability are equal

hence probability for each = 1/n

x              p           xp          x²p

1             1/n          1×1/n       1²×1/n

2             1/n         2×1/n      2²×1/n    

3             1/n         3×1/n       3²×1/n    

....

...

n             1/n          n×1/n      n²×1/n    

mean E(X) = ∑xp  = (1/n) (1 + 2 + 3 + .......................+ n)  = (1/n) n(n + 1)/2

= (n + 1)/2

∑x²p   = (1/n) (1² + 2² + 3² + .......................+ n²)  = (1/n) n(n + 1)(2n+1)/6      

= (n + 1)(2n+1)/6

Var(X)  =  ∑x²p - (∑xp)²  = (n + 1)(2n+1)/6 - ((n + 1)/2)²

=  ((n + 1) / 2) { (2n+1)/3 - (n + 1) / 2}

=  ((n + 1) / 12) { (4n+2 - 3n-3}

=  ((n + 1) / 12) { (n-1}

Var(X)  = (n + 1) (n-1)/12

ratio of Var (X) to E(X) is equal to 4,

=> ( (n + 1) (n-1)/12 ) / ( (n + 1)/2 )  = 4

=> n- 1 = 24

=> n = 25

Var (X) = E(X)

=>( (n + 1) (n-1)/12 ) / ( (n + 1)/2 )   = 1

=> n-1 = 6

=> n = 7

Learn More:

A r.v. X has the given probability distribution, Find the value of k and ...

https://brainly.in/question/6536531

Find k if the following is the p.d.f. of a r.v. X: [tex]f(x) = left{ egin ...

https://brainly.in/question/6536697

Similar questions