Math, asked by rizathoufiq1496, 1 year ago

A r.v. X has the given probability distribution, Find the value of k and calculate mean and variance of X. :
X = x:
-2
-1
0
1
2
3

P (x):
0.1
k
0.2
2k
0.3
k

Answers

Answered by amitnrw
5

Answer:

k = 0.1

Mean = 0.8

Step-by-step explanation:

x:    P(x)

-2    0.1

-1    k

0    0.2

1    2k

2    0.3

3    k

0.1 + k + 0.2 + 2k + 0.3 + k =1

=> 4k = 0.4

=> k = 0.1

x:    P(x)

-2    0.1

-1    0.1

0    0.2

1    0.2

2    0.3

3     0.1

Mean = ((-2) * 0.1  + (-1) * 0.1  + 0*0.2 + 1 *0.2 + 2 * 0.3  + 3 * 0.1)

= -0.2 - 0.1 + 0 + 0.2 + 0.6 + 0.3

= 0.8

Mean = 0.8

Answered by pulakmath007
4

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

  • The value of k

  • The mean and variance for the given Probability distribution of a random variable X

CALCULATION

DETERMINATION OF k

Since a random variable X has the given probability distribution function p(x)

So

  \sf{\sum p(x) = 1}

 \implies \sf{0.1 + k  + 0.2 + 2k + 0.3 + k = 1\: }

 \implies \sf{ 4k  + 0.6 = 1\: }

 \implies \sf{ 4k   = 0.4\: }

 \implies \sf{ k = 0.1\: }

  \boxed{\sf{ \:  \: Hence \:  \:  k = 0.1 \:  \:  \: }}

CALCULATION OF MEAN

Mean

  = \sf{ \sum xp(x)}

 =  \sf{ ( - 2 \times 0.1) + ( - 1 \times  k) + (0 \times 0.2) + (1 \times 2k) + (2 \times 0.3) + (3  \times k)\: }

 =  \sf{  - 0.2  - k + 0 + 2k + 0.6 + 3k\: }

 =  \sf{  4k + 0.4\: }

 =  \sf{ 0.4 + 0.4\: }

 =  \sf{ 0.8\: }

CALCULATION OF VARIANCE

Now

  = \sf{ \sum  {x}^{2}p (x)}

 =  \sf{ ( 4\times 0.1) + ( 1 \times  k) + (0 \times 0.2) + (1 \times 2k) + (4 \times 0.3) + (9  \times k)\: }

 =  \sf{ 0.4 + k+ 0 +  2k + 1.2+ 9  k\: }

 =  \sf{ 1.6 +  12  k\: }

 =  \sf{ 1.6 +  1.2  \: }

 =  \sf{ 2.8\: }

Hence Variance

  = \sf{ \sum  {x}^{2}p (x)} -    {\bigg({ \sum  xp (x) \bigg)}^{2} }

 \sf{ = 2.8 -  {(0.8)}^{2}  \: }

  = \sf{ 2.8 - 0.64}

  = \sf{ 2.16}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If random variables has Poisson distribution such that p(2) =p(3), then p(5) =

https://brainly.in/question/23859240

Similar questions