Physics, asked by pdgoenka, 9 months ago

A race car accelerates uniformly from 18.5 m/s to 46.1 m/s covering a distance of 79.8m. Calculate the time taken to change the velocity.

Answers

Answered by Anonymous
0

\huge\bold\red{HELLO!}

Hello,

Find your answer below.

u=18.5 m/s

v=46.1 m/s

t=2.47 secs                                                                                                                 

a=(v-u)/t

= (46.1-18.5)/ 2.47

= 27.6/2.47= 11.17m/s^2

So, the accelaration is 11.17 m/s^2

&lt;marquee scrollamount = 500&gt;ItzHarsh★</p><p>&lt;marquee&gt;

Answered by Aenah
0

Answer:

\huge \boxed{\bold{2.47\ seconds}}

Question

A race car accelerates uniformly from 18.5 m/s to 46.1 m/s covering a distance of 79.8m. Calculate the time taken to change the velocity.

Given

V_{i} = 18.5\ m/s\\V_{f} = 46.1\ m/s\\x = 79.8\ m\\t = ?

Formula

Let us use the formula x = \frac{1}{2} (V_{f}+ V_{i}) t and derive t.

x = \frac{1}{2} (V_{f}+ V_{i}) t\\\frac{1}{\frac{1}{2}(V_{f}+V_{i})} (x) = (\cancel{\frac{1}{2} (V_{f}+ V_{i})} t) \frac{1}{\cancel{\frac{1}{2}(V_{f}+V_{i})}}\\\bold{t = \frac{x}{\frac{1}{2}(V_{f}+V_{i})}}

Solution

[Sol]

Substitute the given values to the derived formula.

t = \frac{x}{\frac{1}{2}(V_{f}+V_{i})}\\= \frac{79.8\ m}{\frac{1}{2}(46.1\ m/s\ + 18.5\ m/s)}\\= \frac{79.8\ m}{\frac{1}{2}(64.6\ m/s)}\\= \frac{79.8\ \cancel{m}}{32.3\ \cancel{m}/s}\\= \bold{2.470\ s}

From the solution above, the time the car had taken to change the velocity is 2.47 seconds.

~Hope it helps.~

\pink{\overbrace{\underbrace{\tt{Happy\ learning!}}}}

Similar questions
Math, 4 months ago