Physics, asked by Anonymous, 8 months ago

A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. Determine the acceleration of the car and the distance traveled ​

Answers

Answered by ItzArchimedes
50

Given:

  • Initial velocity = 18.5 m/s
  • Final velocity = 46.1 m/s
  • Time taken = 2.47 s

To find:

  • Acceleration
  • Distance travelled

Solution:

Firstly finding acceleration

Using ,

a = v - u/t

Where

  • a → acceleration = ?
  • v → final velocity = 46.1 m/s
  • u → Initial velocity = 18.5 m/s
  • t → time taken = 2.47 s

Substituting the values we have

→ a = 46.1 - 18.5/2.47

→ a = 27.6/2.47

a = 11.17 m/

________________________

Now , finding the distance travelled by using the kinematic equation

S = ut + 1/2 at²

Where

  • s → distance = ?
  • u → initial velocity = 18.5 m/s
  • a → acceleration = 11.17 m/s²
  • t → time taken = 2.47s

Substituting the values we have

→ s = 18.5(2.47) + 1/2 × (11.17)(2.47)²

→ s = 45.7 + 34.1

→ s = 79.8 m

Answers :

  • Acceleration = 11.17 m/s²
  • Distance = 79.8 m
Answered by MaIeficent
63

Explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • Initial velocity = 18.5 m/s

  • Final velocity = 46.1m/s

  • Time = 2.47 sec

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • Acceleration of the car

  • Distance traveled by the car

{\green{\underline{\underline{\bold{Solution:-}}}}}

According to first equation of motion

\large \boxed{   \pink{\rightarrow\rm v = u + at }}

Here:-

• v = final velocity

• u = initial velocity

• a = acceleration

• t = time

Substituting the values:-

\rightarrow\rm 46.1 = 18.5 + a(2.47)

\rightarrow\rm 46.1 - 18.5 =  2.47a

\rightarrow\rm 27.6 =  2.47a

\rightarrow\rm  \dfrac{27.6}{2.47}  = a

\rightarrow\rm  a = 11.17 m/{s}^{2}

According to third equation of motion

\large \boxed{   \pink{\rightarrow\rm  {v}^{2} -  {u}^{2}  = 2as }}

Here:-

• s = distance covered

Substituting the values

\rightarrow\rm  {46.1}^{2} -  {18.5}^{2}  = 2(11.17)(s )

\rightarrow\rm  2125.21 -  342.25  = 22.34s

\rightarrow\rm  1782.96 = 22.34s

\rightarrow\rm  \dfrac{1782.96}{11.17}   = s

\rightarrow\rm  s = 79.8

Therefore:-

 \boxed{\rm \purple{ \rightarrow Acceleration \:  = 11.17m /{s}^{2} }}

 \boxed{\rm \purple{ \rightarrow Distance \:  = 79.8m }}

Similar questions