Physics, asked by vcmoulik, 2 months ago

A race car moving on a circular track of radius 20 meters. If car’s speed is 108 km/h, then the magnitude of the centripetal acceleration is​

Answers

Answered by TheEmeraldBoyy
62

{\huge{\boxed{\sf{\green{❥✰Question✰}}}}}

A race car moving on a circular track of radius 20 meters. If car’s speed is 108 km/h, then the magnitude of the centripetal acceleration is​

\huge\star\underline{\mathtt\orange{❥a} \mathfrak\blue{n } \mathbb\purple{ Տ} \mathbb\pink{wer}}\star\:

Given :-

A race car moving on a circular track of radius 20 metres.

Car's speed is 108 km/h.

To Find :-

What is the centrifugal acceleration.

Formula Used :-

Centrifugal Acceleration Formula :

\longmapsto \sf \boxed{\bold{\pink{a_c =\: \dfrac{v^2}{r}}}}⟼ a c​	 = rv 2

where,\sf a_ca c

 = Centrifugal Acceleration

v = Velocity

r = Radius

Solution :-

Given :

\leadsto⇝ Radius :\implies \sf\bold{\green{20\: metres}}⟹20metres\leadsto⇝ Velocity :\implies \sf 108\: km/h⟹108km/h\implies \sf 108 \times \dfrac{5}{18}⟹108× 185

\implies \sf \dfrac{\cancel{540}}{\cancel{18}}⟹ 18 540 ​	 \implies \sf\bold{\green{30\: m/s}}⟹30m/s

Hence, we get :

Radius (r) = 20 metres

Velocity (v) = 30 m/s

According to the question by using the formula we get,

\dashrightarrow \sf a_c =\: \dfrac{(30)^2}{20}⇢a c​	 = 20(30) 2

\dashrightarrow \sf a_c =\: \dfrac{30 \times 30}{20}⇢a c​	 = 2030×30

\dashrightarrow \sf a_c =\: \dfrac{90\cancel{0}}{2\cancel{0}}⇢a c​	 = 2 0​	 90 0

\dashrightarrow \sf a_c =\: \dfrac{\cancel{90}}{\cancel{2}}⇢a c​	 = 2​	 90

\dashrightarrow \sf\bold{\red{a_c =\: 45\: m/s^2}}⇢a c​	 =45m/s 2

\therefore∴ The centrifugal acceleration is 45 m/s²

Similar questions