Math, asked by rthor980, 1 year ago

a race track is in the form of a ring whose inner circumference is 220 m and the circumference is 440 m find the width of the track​

Answers

Answered by Anonymous
122

Solution:

Given:

⇒ Inner circumference = 220 m

⇒ Outer circumference = 440 m

To find:

⇒ Width of track

Formula used:

Circumference = 2πr

Let inner circumference be r₁ and outer circumference be r₂.

So, inner circumference = 2πr₁

\sf{\implies 220=2\times \dfrac{22}{7}\times r_{1}}

\sf{\implies r_{1}=\dfrac{220\times 7}{2\times 22}}

\sf{\implies r_{1}=\dfrac{1540}{44}}

\sf{\implies r_{1}=35\;m}

⇒ Outer circumference = 2πr₂

\sf{\implies 440=2\times \dfrac{22}{7}\times r_{2}}

\sf{\implies r_{2}=\dfrac{440\times 7}{2\times 22}}

\sf{\implies r_{2}=\dfrac{3080}{44}}

\sf{\implies r_{2}=70\;m}

⇒ Width of road = Outer circumference - Inner circumference

⇒ Width of road = 70 - 35

⇒ Width of road = 35 m

Answered by Anonymous
47

\large{\mathfrak{\red{\underline{Question:}}}}

A race track is in the form of a ring whose inner circumference is 220 m and the circumference is 440 m. Find the width of the track​?

\large{\mathfrak{\red{\underline{Answer:}}}}

\star{\bf{\red{\underline{Given:}}}}

  • Inner circumference = 220 m
  • Outer circumference = 440 m
  • Width of track = ?

\sf{So,\;Let\;inner\;circumference\;be\;r.}

\sf{Outer\;circumference\;be\;R.}

\sf{\implies Inner\;circumference=2\pi r}

\sf{\implies 220 = 2\times \dfrac{22}{7} \times r}

\sf{\implies 1540=44\times r}

\sf{\implies r=\dfrac{1540}{44}}

{\boxed{\boxed{\red{\bf{\implies r=35\;m}}}}}

\sf{\implies Outer\;circumference=2\pi R}

\sf{\implies 440 = 2\times \dfrac{22}{7} \times R}

\sf{\implies 3080=44\times R}

\sf{\implies R=\dfrac{3080}{44}}

{\boxed{\boxed{\red{\bf{\implies R=70\;m}}}}}

\sf{Now,\;as\;we\;know,}

\sf{\implies Width\;of\;the\;track=Outer\;circumference-Inner\;circumference}

\sf{\implies Width\;of\;the\;track=70-35}

\large{\boxed{\boxed{\red{\bf{\implies Width\;of\;the\;track=35\;m}}}}}

Similar questions