Math, asked by miutescraft, 11 months ago


A race track is in the form of a ring whose inner circumference is of 396 m and
outer circumference is of 440 m. Find the width and area of track.​

Answers

Answered by cyriacjoy001
3

Answer:

The width of the track is difference in the 2 radii and is equal to 14m.

Answered by Anonymous
49

❏ Question:-

@ A race track is in the form of a ring whose inner circumference is of 396 m and outer circumference is of 440 m. Find the width and area of track.

❏ Solution:-

✦Given:-

• Inner circumference(C_{inn}) = 396 cm.

• Outer Circumference(C_{out}) = 440 cm.

To Find:-

• The width(d) of that track = ?.

• Area(A) of that track. = ?.

Explanation:-

Let, the Inner radius and the outer radius of the circular track is r and R .

Now, The inner circumference of the track is ,

\sf\longrightarrow C_{inn}=2\pi r

The Outer circumference of the track is ,

\sf\longrightarrow C_{out}=2\pi R

Now,

\sf\longrightarrow C_{out}- C_{inn}=2\pi R-2\pi r

\sf\longrightarrow 440-396=2\times \dfrac{22}{7} (R- r)

\sf\longrightarrow \dfrac{\cancel{44}\times7}{\cancel{22}\times\cancel2}= (R- r)

\sf\longrightarrow  \boxed{(R- r) = 7\:cm}...........(i)

Now, The width of the track is,

\sf\longrightarrow d=R-r

\sf\longrightarrow\boxed{\red{ d= 7 \:cm}}

Width of the track is = 7 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━

2nd Part of the problem

\huge \star

\sf\longrightarrow C_{out}+C_{inn}=2\pi R-2\pi r

\sf\longrightarrow 440+396=2\times \dfrac{22}{7} (R+r)

\sf\longrightarrow \dfrac{\cancel{836}\times7}{\cancel{22}\times\cancel2}= (R+ r)

\sf\longrightarrow 19\times7 (R+r)

\sf\longrightarrow\boxed{ (R+r)=133\:cm  }..................(ii)

Now, adding \bf eq^n (i) & (ii), we get.

\sf\longrightarrow (R-r)+(R+r)=7+133

\sf\longrightarrow R-\cancel{r}+R+\cancel{r}=140

\sf\longrightarrow 2R=140

\sf\longrightarrow R=\frac{\cancel{140}}{\cancel2}

\sf\longrightarrow\boxed{\large{ \red{R=70\:cm}}}

Putting the value ,R = 70 cm, in \bf eq^n (i) , we get.

\sf\longrightarrow R-r=7

\sf\longrightarrow 70-r=7

\sf\longrightarrow r=70-7

\sf\longrightarrow\boxed{\large{ \red{r=63\:cm}}}

Now,

Area of the path,

\sf\longrightarrow A_{path}=A_{out}-A_{in}

\sf\longrightarrow A_{path}=\pi R^2-\pi r^2

\sf\longrightarrow A_{path}=\pi (R^2- r^2)

\sf\longrightarrow A_{path}=\frac{22}{7}\times (R+r)\times(R-r)

\sf\longrightarrow A_{path}=\frac{22}{7}\times 133\times7

\sf\longrightarrow A_{path}=22\times 133

\sf\longrightarrow \boxed{\large{\blue{A_{path}=2926\:cm^2}}}

Area of the track is = 2926 cm².

━━━━━━━━━━━━━━━━━━━━━━━

Formula used:-

✦CIRCLE✦

❚ For a Circle of radius r ,

(1)Area is given by,

\sf\longrightarrow \boxed{Area=\pi r{}^{2}}

(2) Circumference is given by,

\sf\longrightarrow\boxed{ Circumference=2\pi r=\pi d}

where, d=2r= diameter of the circle.

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

✦please rate it if it helps u :)

Similar questions