Physics, asked by FenisaDias, 8 months ago

A radio station broadcast on a frequency of 980 kHz. Calculate the wavelength of the electromagnetic radiation.

(With step by step) I'll mark as brainliest​

Answers

Answered by ShírIey
175

AnswEr :

⠀⠀⠀⠀⠀

⠀⠀\bulletFrequency [v] = 980 kHz

⠀⠀⠀⠀⠀

\implies\sf 980 \times 10^{3} Hz

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀Using Formula :

⠀⠀⠀⠀

\star\: \: \boxed{\frak{ v = \dfrac{c}{\lambda}}}

\qquad\qquad\quad\underline{\sf{Substituting \ Values \ :}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀Now Finding wavelength : ⠀⠀⠀⠀

\implies\sf v = \dfrac{ 3 \times 10^{8} ms^{-1}}{980 \times 10^{3}}  \\\\\\\implies\sf \dfrac{3}{98} \times 10^{4} \\\\\\\implies\boxed{\frak{\purple{306 \ m}}}

Hence, wavelength of the electromagnetic radiation is 306 m.

Answered by Qᴜɪɴɴ
104

Given:

  • v= frequency= 980kHz

Need to find:

  • The wavelength= \lambda =?

━━━━━━━━━━━━━━━━━━━

Solution:

980 kHz

=980 ×1000 Hz

C= 3× 10^{8}

Now we know:

\red{\bold{C =  \nu \:  \lambda \: }}

Substituting the values:

3 \times  {10}^{8}  =  980 \times 1000 \:  \times  \lambda

 \implies \:  \lambda \:  =  \dfrac{3 \times  {10}^{8} }{980 \times 1000}

 \implies \lambda =   \dfrac{3 \times  {10}^{8 - 3} }{980} m

 \implies \:  \lambda =  \dfrac{3 \times  {10}^{5} }{980} m

 \implies \:  \lambda = 0.00306 \times  {10}^{5} m

 \implies \:  \lambda = 3.06 \times  {10}^{2} m

\red{\boxed{ \therefore\: \lambda \:  = 306 m}}

Similar questions