Math, asked by mickkaei77, 8 hours ago

A random process X(t) is determined by tossing two dice to determine which of the following sinusoids to pick
X(t) = x1(t) = sin(t), if sum is 3 or 7.

= x2(t) = cos(2t), if the sum is 2 or 12.

= x3(t) = sin(2t), otherwise.

Find E(X) and variance for X= π/2.

Answers

Answered by amitnrw
0

Given :   A random process X(t) is determined by tossing two dice to determine which of the following sinusoids to pick

X(t) = x1(t) = sin(t), if sum is 3 or 7.

      = x2(t) = cos(2t), if the sum is 2 or 12.

       = x3(t) = sin(2t), otherwise.

To Find :  E(X) and variance for X= π/2.

Solution:

Sum 3 or 7   (1 , 2) , (2 , 1) , ( 1 , 6) , ( 2 , 5) , (3, 4) , (  4, 3) , ( 5 , 2) , ( 6 , 1)  

Probability = 8/36   = 2/9

Sum 2  or 12   ( 1, 1 )  ( 6 , 6)   Probability = 2/36  = 1/18

Otherwise  =  1 - 1/18 - 2/9   =  13/18

sin(t) => sin(π/2)  = 1     Probability =  2/9

cos(2t) => cos (2(π/2)) = - 1   Probability =  1/18

sin(2t)  =>  cos (2(π/2)) = 0   Probability =  13/18

X          P(X)       X.P(X)        X²      X²P(X)

1           2/9           2/9          1          2/9

-1          1/18          -1/18         1           1/18

0          13/18          0            0           0

E(X) = ∑ X.P(X)   = 2/9 - 1/18   =  3/18  = 1/6

E(X) =  1/6

Variance = ∑X²P(X)  - (  ∑ X.P(X))²

= 5/18 - (1/6)²

= 5/18 - 1/36

= 9/36

= 1/4

Learn More"

A r.v. X has the given probability distribution, Find the value of k and ...

https://brainly.in/question/6536531

Similar questions