Math, asked by kollipara2387, 1 year ago

A random variable X has the following distribution
Find E(x) , E(x²) and Var (x)

Attachments:

Answers

Answered by JinKazama1
0
Final Answer : 1) E(X) = 1/2 
                          2) E(X^{2}) =  \frac{11}{6}  
                          3) Var(X)= 19/12

Steps:
1) The Expected value of  discrete random variable  X is usually written as  

m=E(X)= 
\sum_{all \:\: x}^{} P(X=x)* \: x 

According to given values,

m= E(X) =  \frac{1}{3} * (-1) + \frac{1}{6} * (0) + \frac{1}{6} * (1) + \frac{1}{3} * (2)  =  \frac{1}{2}

Hence,E(X) = 1/2 


2) We know that 

 
[tex]E(X^{2} ) = \sum_{all \:\: x}^{} P(X=x)* \: x^{2} \\ \\=\ \textgreater \ \frac{1}{3} *(-1)^{2} + \frac{1}{6} *(1)^{2} + \frac{1}{6} *(0)^{2} + \frac{1}{3} *(2)^{2} \\ \\ =\ \textgreater \ \frac{11}{6} [/tex]

3) Variance =Tells us about the spreadness of the possible values of the random variable X.

Var(X) = E(X^{2})- m^{2}  \\ \\  =\ \textgreater \   \frac{11}{6} -  ( \frac{1}{2} )^{2}  =  \frac{19}{12 }


Similar questions