a rational number is in the form of p/q in which q not equal to 0 and p q are positive integers which represent 0.134bar is ( bar on 34 only)
Answers
Answer:
Step-by-step explanation:
let x=0.134343434
let x=0.134343434so 10x=1.343434---------->eq(1)
let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)
let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)
let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)990x=133
let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)990x=133
Answer:
133/990
Step-by-step explanation:
let x=0.134343434
let x=0.134343434let x=0.134343434so 10x=1.343434---------->eq(1)
let x=0.134343434let x=0.134343434so 10x=1.343434---------->eq(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)
let x=0.134343434let x=0.134343434so 10x=1.343434---------->eq(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)
let x=0.134343434let x=0.134343434so 10x=1.343434---------->eq(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)990x=133
let x=0.134343434let x=0.134343434so 10x=1.343434---------->eq(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)990x=133let x=0.134343434so 10x=1.343434---------->eq(1)100x=134.343434------------>eq(2)(2)-(1)990x=133