Physics, asked by khushkhan666, 1 year ago

A ray of light enters flint glass from air.
The refractive index of flint glass with respect to air is 1.65, by what percent does the speed of light reduce on entering the flint glass

Answers

Answered by Anonymous
10

 \Large \bf Given :

 \bf Refractive \: index \: of \: flint \: glass, \: η_{g} = 1.65

 \Large \bf To \: Find :

 \bf Speed \: of \: light \:  in \:  glass, v_{g}

 \Large \bf Solution :

 \bf We \: know \:  that \: speed \: of \: light \: in \: air, c=3×10⁸m/s

Now, by formula :

 \bf η_{g} = \dfrac{c}{v_{g}}

 \bf \implies v_{g} = \dfrac{c}{η_{g}}

 \bf \implies v_{g} = \dfrac{3 \times 10^{8}m/s}{1.65}

 \bf \implies v_{g} = \dfrac{3}{1.65}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{3 \times 100}{165}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{\cancel{3} \times 100}{\times{\cancel{165}}_{55}}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{100}{55}\times 10^{8}m/s

 \bf \implies v_{g} = 1.8181... \times 10^{8}m/s

 \bf \implies v_{g} = 1.82 \times 10^{8}m/s \: (approx.)

 \bf \therefore Speed \: of \: light \:  in \:  glass, v_{g} =  1.82 \times 10^{8}m/s \: (approx.)

Similar questions