Physics, asked by ritikraj75, 1 year ago

A ray of light enters into benzene from air. If the refractive index of benzene is 1.50, by what percent does the speed

of light reduce on entering the benzene?

Answers

Answered by SerenaBochenek
35

The speed of light in air is c = 3\times 10^{8}\ m/s

The refractive index of the benzene [\mu]\ =\ 1.50

Let the velocity of light in benzene is v.

The refractive index of the benzene is defined as -

                                  \mu\ =\ \frac{velocity\ of\ light\ in\ air}{velocity\ of\ light\ in\ benzene}

                                  i.e\ \mu\ =\ \frac{c}{v}

                                  v=\ \frac{c}{\mu}

                                        =\ \frac{3\times 10^{8}} {1.5}\ m/s

                                        =\ 2\times 10^{8}\ m/s

Hence, the decrease in value of speed dv = c - v

                                                                      = (3\times 10^8\ -\ 2\times 10^8)\ m/s

                                                                      = 1\times 10^8\ m/s

The percentage loss of speed = \frac{dv}{c}\times 100

                                                   = \frac{1\times 10^8}{3\times 10^8}\times 100

                                                  = 0.333\times 100

                                                  = 33.3%

Hence, the speed of light will be reduced by 33.3 % when it will enter the benzene.

Answered by topanswers
7

Given:

Refractive index = 1.50

Light enters benzene.

To find:

The reduction in the speed of the light.

Solution:

By formula,

Refractive index = c / v

Where,

c - speed of light in air

c = 3 * 10^8 m / s

v -  speed of light in benzene.

v = c / Refractive index

Substituting,

We get,

v = 3 * 10^8 / 1.50

Hence, the speed of the light in benzene = 2 * 10^8 m / s

Difference in speeds =  3 * 10^8 - 2 * 10^8 / 3 * 10^8

Hence, the speed reduces by 33%  

Read more on Brainly.in - https://brainly.in/question/6683523

Similar questions