A ray of light is sent along the line x - 2y = 3 and upon reaching the line 3x-2y=5, the ray is reflected from it. Find the equation of line containing the reflected ray.
Answers
Given that,
A ray of light is sent along the line x - 2y = 3 and upon reaching the line 3x-2y=5, the ray is reflected from it.
So, incident ray lies along the line x - 2y = 3 and the line 3x - 2y = 5 acts as a mirror.
Let assume that P be the point where incident ray strike the mirror.
So, solving two lines to get coordinates of P.
and
On Subtracting equation (1) from (2), we get
So, on substituting x = 1 in equation (1), we get
So, it means Coordinates of P (1, - 1).
Now, from figure [ in attachment ] we concluded that
∠APB = ∠CPD = a ( which is acute ).
Now,
Equation of incident ray is x - 2y = 3
So, slope of incident ray, m = 1/2
Also,
Equation of mirror is 3x - 2y = 5
So, slope of mirror, M = 3/2
Let assume that slope of line along reflected ray be n.
We know,
The angle p between two lines slope m and M is given by
So, on substituting the values, we get
So,
Equation of line containing the reflected ray which passes through the point (1, - 1) and having slope n = 29/2 is given by
So, the equation of line containing reflected ray is
Additional Information :-
Different forms of equations of a straight line
1. Equations of horizontal and vertical lines
Equation of line parallel to y - axis passes through the point (a, b) is x = a.
Equation of line parallel to x - axis passes through the point (a, b) is y = b.
2. Point-slope form equation of line
Equation of line passing through the point (a, b) having slope m is y - b = m(x - a)
3. Slope-intercept form equation of line
Equation of line which makes an intercept of c units on y axis and having slope m is y = mx + c.
4. Intercept Form of Line
Equation of line which makes an intercept of a and b units on x - axis and y - axis respectively is x/a + y/b = 1.
5. Normal form of Line
Equation of line which is at a distance of p units from the origin and perpendicular makes an angle β with the positive X-axis is x cosβ + y sinβ = p.