A ray of light passes from vacuum into a medium of refractive index n, the angle of incidence is found to be twice the angle of refraction. Then the angle of incidence is ?
Answers
Let us Consider incident Angle = ∠i
Refrected angel = ∠r
Now given:-
∠i = 2 ∠r
So, ∠r = ∠i / 2
The refrective index of vaccum is and that of the another medium is "n"
Now, according to Snell's law
1 sin ∠ = n sin ∠r
sin ∠i = n sin ( ∠i / 2 )
2 sin ( ∠i / 2 ) cos ( ∠i / 2 )
= n sin ( ∠i / 2 )
sin ( ∠i / 2 ) [ 2 cos( ∠i / 2 ) - n = 0
sin ( ∠i / 2) = 0 = sin π
or, ∠i = 2 cos¹(n / 2)
Now, the value of incident Angle Cannot be 2π
So, the value of incident angle is
Refractive index ( μ ) = 2
Angle of refraction ( r ) = r = sin i / 2
Angle of incidence ( i ) = 2 × angle of refraction ( r )
The ratio of the sine of angle of incidence to sine of angle of refraction is constant for a given pair of medium i.e
⇒ 1 sin ∠ = n sin ∠r
⇒ sin ∠i = n sin ( ∠i / 2 )
⇒ 2 sin ( ∠i / 2 ) cos ( ∠i / 2 ) = n sin ( ∠i / 2 )
⇒ sin ( ∠i / 2 ) [ 2 cos( ∠i / 2 ) - n ] = 0
⇒ sin ( ∠i / 2) = 0 = sin π or, ∠i = 2 cos¹(n / 2)
Now, sin i cannot be sin π
So,
sin i = 2 cos¹( n / 2 )
_________________________________
✍️ 0 / [ 2 cos( ∠i / 2 ) - n ] = 0
✍️ 2 sin ( ∠i ) cos ( ∠i ) = sin 2i
Reason ➡
L.H.S = 2 sin ( ∠i ) cos ( ∠i )
R.H.S = sin 2i
Let sin i = 30°
L.H.S
= 2 sin ( ∠i ) cos ( ∠i )
= 2 × sin 30° × cos 30°
= 2 × 1 / 2 × √3 / 2
[ sin 30° = 1 / 2 , cos 30 ° = √3 / 2 ]
= √3 / 2
R.H.S
= sin 2i
= sin 2 × 30°
= sin 60° [ sin 60° = √3 / 2 ]
= √3 / 2 = L.H.S
Therefore, 2 sin ( ∠i ) cos ( ∠i ) = sin 2i
2 sin ( ∠i / 2 ) cos ( ∠i / 2 ) = sin i
✍️ sin π = 0 [ Does not exist or it's not valid ]