Physics, asked by GothaalaSheoran2308, 10 months ago

A real image 4/5 size of the object is formed 18 cm from a lens. Calculate the focal length of the lens.

Answers

Answered by Anonymous
11

\large\underline{\bigstar \: \: {\sf Given-}}

  • Real image size is {\sf \dfrac{4}{5}} of object.
  • Image Distance is (v) = 18cm

\large\underline{\bigstar \: \: {\sf To \; Find -}}

  • Focal Lenght (f)

\large\underline{\bigstar \: \: {\sf Formula \: Used -}}

\implies\underline{\boxed{\sf Magnification\:(m)=\dfrac{h_i}{h_o}=\dfrac{-v}{u}}}

{\sf h_i=Height \: of \: image }

{\sf h_o= Height \; of \: object }

\large\underline{\bigstar \: \: {\sf Solution-}}

\implies{\sf m = \dfrac{h_i}{h_o}=\dfrac{-v}{u} }

\implies{\sf \dfrac{4}{5}=\dfrac{-18}{u} }

\implies{\sf u = \dfrac{-18\times 5}{4} }

\implies{\bf u = -\dfrac{45}{2}\:cm}

We get Object Distance u = -45/2 cm

To find focal lenght -

\implies{\sf  \dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}}

\implies{\sf \dfrac{1}{f}=\dfrac{1}{18}-\left(-\dfrac{2}{45}\right) }

\implies{\sf \dfrac{1}{f}=\dfrac{45+(2\times 18)}{18 \times 45} }

\implies{\sf \dfrac{1}{f}=\dfrac{45+36}{810}}

\implies{\sf f=\dfrac{810}{81}}

\implies{\bf f = 10\: cm}

\large\underline{\bigstar \: \: {\sf Answer-}}

Focal Lenght of lens is {\bf 10\: cm}

Answered by surisetti05
0

Explanation:

Nice explanation bro awesome I also tried but I am getting wrong ans3

Similar questions