Math, asked by kkhemalatha2889, 4 months ago

A rectangle has a length which is 4 feet less than three times the width. The perimeter is 224 feet. What are the dimensions .

Answers

Answered by EliteZeal
81

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Length of rectangle is 4 feet less than three times the width

 \:\:

  • The perimeter is 224 feet

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The dimensions of rectangle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length of rectangle be "x"

  • Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

Length of rectangle is 4 feet less than three times the width

 \:\:

➠ x = 3y - 4 ------- (1)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(Length + Width) --------(2)

 \:\:

Also given that the perimeter is 224 feet

 \:\:

 \underline{\bold{\texttt{Perimeter of given rectangle :}}}

 \:\:

  • Length = x = 3y - 4

 \:\:

  • Width = y

 \:\:

  • Perimeter = 224

 \:\:

Putting these values in (2)

 \:\:

➠ 2(Length + Width)

 \:\:

➜ 2(x + y) = 224

 \:\:

➜ 2(3y - 4 + y) = 224

 \:\:

 \sf 4y - 4 = \dfrac { 224 } { 2 }

 \:\:

➜ 4y - 4 = 112

 \:\:

➜ 4y = 112 + 4

 \:\:

➜ 4y = 116

 \:\:

 \sf y = \dfrac { 116 } { 4 }

 \:\:

➨ y = 29

 \:\:

  • Hence width of rectangle is 29 feet

 \:\:

Putting y = 29 in (1)

 \:\:

➜ x = 3y - 4

 \:\:

➜ x = 3(29) - 4

 \:\:

➜ x = 87 - 4

 \:\:

➨ x = 83

 \:\:

  • Hence length of rectangle is 83 feet

 \:\:

∴ The length and width of rectangle is 83 feet & 29 feet respectively

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

Additional information

 \:\:

Area of rectangle

 \:\:

  • Length × Width

 \:\:

Properties of rectangle

 \:\:

  • Opposite sides are parallel and congruent.

  • All angles are right.

  • The diagonals are congruent and bisect each other.

  • Opposite angles formed at the point where diagonals meet are congruent.

  • The sum of all the interior angles is equal to 360 degrees.

 \:\:

━═━═━═━═━═━═━═━═━━═━═━═━═

Answered by Ranveerx107
1

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • Length of rectangle is 4 feet less than three times the width

 \:\:

  • The perimeter is 224 feet

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • The dimensions of rectangle

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the length of rectangle be "x"

  • Let the breadth of rectangle be "y"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

  • Length of rectangle is 4 feet less than three times the width

 \:\:

➠ x = 3y - 4 ------- (1)

 \:\:

 \underline{\bold{\texttt{Perimeter of rectangle :}}}

 \:\:

➠ 2(Length + Width) --------(2)

 \:\:

Also given that the perimeter is 224 feet

 \:\:

 \underline{\bold{\texttt{Perimeter of given rectangle :}}}

 \:\:

Length = x = 3y - 4

 \:\:

Width = y

 \:\:

Perimeter = 224

 \:\:

⟮ Putting these values in (2) ⟯

 \:\:

➠ 2(Length + Width)

 \:\:

➜ 2(x + y) = 224

 \:\:

➜ 2(3y - 4 + y) = 224

 \:\:

 \sf 4y - 4 = \dfrac { 224 } { 2 }

 \:\:

➜ 4y - 4 = 112

 \:\:

➜ 4y = 112 + 4

 \:\:

➜ 4y = 116

 \:\:

 \sf y = \dfrac { 116 } { 4 }

 \:\:

➨ y = 29

 \:\:

  • Hence width of rectangle is 29 feet

 \:\:

⟮ Putting y = 29 in (1) ⟯

 \:\:

➜ x = 3y - 4

 \:\:

➜ x = 3(29) - 4

 \:\:

➜ x = 87 - 4

 \:\:

➨ x = 83

 \:\:

  • Hence length of rectangle is 83 feet

 \:\:

  • ∴ The length and width of rectangle is 83 feet & 29 feet respectively

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions